災害廃棄物発生量の推計等に係る業務 京田辺市

目 次

	対象災害	. 1
1.	1 自治体の概要	. 1
1.	2 地震被害想定	. 2
1.	3 風水害(洪水)	. 3
2.		
2.	3 し尿発生量の推計	13
	2.3.1 推計方法	
	2.3.2 推計結果	13
2.	4 片付けごみ発生量の推計(試算)	16
	2.4.1 地震災害	
(
3.		
_		
3.		
4.		
1		
ᅻ.		
•		
	11.11.11.11.11.11.11.11.11.11.11.11.11.	1.1 自治体の概要 1.2 地震被害想定 1.3 風水害(洪水) . 災害廃棄物及びし尿の発生量の推計 2.1 災害廃棄物発生量の推計方法 2.1.1 地震災害 2.1.2 風水害 2.2.1 地震による災害廃棄物発生量の推計 2.2.2 災害廃棄物発生量の推計 2.2.2 風水害による災害廃棄物発生量の推計 2.3.1 地震による災害廃棄物発生量の推計 2.3.1 推計方法 2.3.1 推計方法 2.3.2 推計結果

1. 対象災害

1.1 自治体の概要

山城盆地(京都盆地)の南部に位置する。東は木津川を挟んで城陽市、井手町に接し、西は生駒山系北端の甘南備山系により大阪府枚方市、奈良県生駒市と境を分かち、北は八幡市、南は精華町と接している内陸都市である。高速道路・鉄道に恵まれ、大阪・京都・奈良へのアクセスがよく、都市化の進む北部、のどかな田園風景の広がる中部、豊かな緑と山に恵まれた南部とに分かれている。

旧来から木津川の氾濫による堤防決壊等により大きな被害を受けており、豪雨等による水害が懸念されている。

地震については、生駒断層、奈良盆地東縁断層帯及び木津川断層を震源とする地震が想定されており、このうち、生駒断層を震源とする地震が発生した場合には、地震規模はM7.5、市域では最大震度7に達すると想定されている。

図 1.1.1 京田辺市

出典:地理院地図をもとに作成

1.2 地震被害想定

(1) 地震被害想定

対象地域においては、「生駒断層帯地震」によって最大震度 7 の強い揺れが想定されている。特に、市内中心部において震度 7~6 強が想定されており、鉄道や高速道路などの機能に被害が生じ、交通網が寸断される可能性がある。

表 1.2.1 対象地域における想定災害

対象自治体	地震	津波
京田辺市	生駒断層帯地震(震度 7)	なし

出典:「京都府地震被害想定調査」(平成20年、京都府)をもとに作成



図 1.2.1 生駒断層帯地震 震度分布図

出典:「京田辺市地域防災計画 震災対策編」(平成28年、京田辺市)をもとに作成

1.3 風水害(洪水)

(1) 浸水想定区域

対象地域においては、市内北部から東部にかけ木津川による氾濫が想定されている。河川近傍では 5.0m 以上の浸水も想定されており、大量の災害廃棄物の排出が想定される。

表 1.3.1 洪水浸水想定区域の計画降雨量等

浸水想定	木津川洪水浸水想定区域図(最大最大規模)			
作成者	国土交通省近畿地方整備局淀川河川事務所			
公表	平成 29 年 6 月最終更新			
洪水規模	加茂地点上流域の 12 時間総雨量 358 ㎜(淀川合流点~島ヶ原地点)			

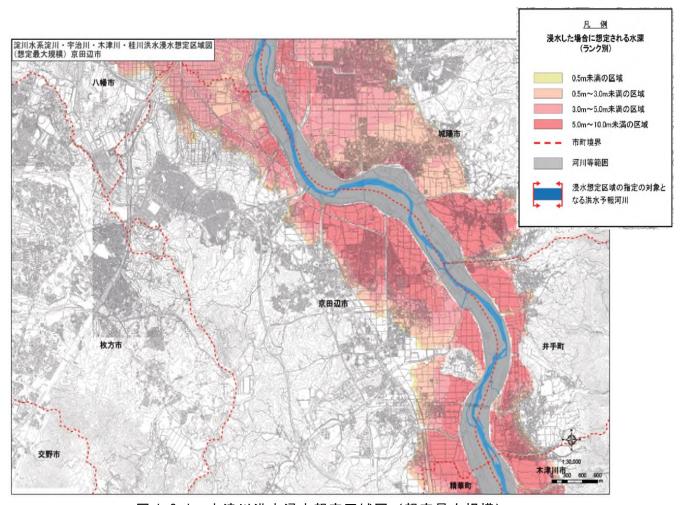


図 1.3.1 木津川洪水浸水想定区域図 (想定最大規模)

出典:「木津川洪水浸水想定区域図(想定最大規模)」(平成29年6月14日、国土交通省近畿地方整備局 淀川河川事務所)

2. 災害廃棄物及びし尿の発生量の推計

地震災害及び風水害による被害のうち2種類程度の被害想定を設定し、災害廃棄物(片付けごみ、解体ごみ)及び仮設トイレ等からの汲み取りし尿の発生量を推計する。

	X X X X X X X X -						
	対象被害想定	出典/策定年					
地震災害	生駒断層帯地震(震度 7) ②津波:なし	京田辺市地域防災計画 震災対策編/平成 28 年					
風水害	木津川の氾濫	木津川洪水浸水想定区域図(想定最大規模)/ 平成 29 年 6 月 14 日(国土交通省近畿地方整備局淀川河川事務所)					

表 2.1 検討対象とする災害

2.1 災害廃棄物発生量の推計方法

2.1.1 地震災害

地震災害による災害廃棄物発生量の算定方法には、地震被害想定等で使用される算定式 (以下、「内閣府が示す方式」という。)と、「災害廃棄物対策指針」及び「巨大災害発生時 における災害廃棄物対策のグランドデザインについて 中間とりまとめ」で示された算定式 (以下、「環境省が示す方式」という。)の2つがある。内閣府が示す方式では平均延床面 積、構造別全壊棟数が必要であり、災害時のデータ入手が課題となる。そのため、本業務 では災害時にデータ入手が比較的容易な「環境省が示す方式」を採用する。参考として、 表2.1.1 に平成28年度災害廃棄物処理計画策定モデル事業(近畿ブロック)報告書におけ る京都府結果等を示す。

	XIII Shin XI Makazari I Co Girin Ma (90)						
項目		内容					
災害廃棄物処理		・計画策定中					
計画策定状況		・平成 28 年度災害廃棄物処理計画策定モデル事業(近畿ブロック)報					
		告書(平成 29 年 3 月、環境省近畿地方環境事務所)において発生量					
		等算出					
発生量	地震	環境省が示す方式					
推計	風水害	算出無し					

表 2.1.1 京都府災害廃棄物処理計画による推計方法 (参考)

(1) 算定式

【内閣府が示す方式】

◆災害廃棄物発生量(t) = s × q1 × N1

s:1棟当たりの平均延床面積(平均延床面積)(m²/棟)

q1 : 単位延床面積当たりの災害廃棄物発生量(発生原単位)(t/m²)

N1 : 解体建築物の棟数 (解体棟数=構造別全壊棟数·火災焼失棟数)

内閣府が示す方式による算定式は、1 棟当たりの平均延床面積(㎡)に、建物の構造別(木造、非木造〔鉄筋、鉄骨〕)の発生原単位(t/㎡)と解体建築物の棟数(構造別全壊棟数・火災焼失棟数)を掛け合わせて、可燃物及び不燃物の発生量を算定している。

【環境省が示す方式】

◆災害廃棄物発生量(t)=建物被害棟数(棟)×発生原単位(t/棟)×種類別割合(%)

環境省が示す方式の算定式は、建物被害棟数(全壊棟数+半壊棟数)に1棟当たりから 出てくる災害廃棄物発生量の発生原単位と種類別割合を掛け合わせて、可燃物、不燃物、 コンクリートがら、金属くず、柱角材の発生量を算定している。

(2) 発生原単位及び種類別割合

「環境省が示す方式」では、表 2.1.2 の 2 種類の発生原単位を設定している。

南海トラフ巨大地震の発生原単位は東日本大震災における災害廃棄物処理の実績などから、首都直下地震の発生原単位は内閣府(2013)による首都直下地震の被害想定に基づいている。同様に、災害廃棄物発生量の種類別割合を表 2.1.3 のとおり設定している。

総務省統計局による「平成25年住宅・土地統計調査」では、対象地域の住家の構造割合は木造が50%(13,430棟)、非木造が50%(13,610棟)であり、旧耐震基準(昭和56年以前)の建物が木造では28%、非木造では19%を占めている。東日本大震災の被災割合は、木造が85~90%、非木造が10~15%であった。対象地域では、東日本大震災よりは非木造の割合が高いものの、非木造の末面積は首都直下地震で想定されている非木造建物と大きく異なることが想定される。そのため、本検討の全壊・半壊の発生原単位ならびに被害区分別の種類割合は、南海トラフ巨大地震の値を適用した。

表 2.1.2 版 B E 7 所 O 光 工					
被害区分		発生原単位			
		南海トラフ巨大地震	首都直下地震		
全壊		117t/棟	161t/棟		
半壊		23t/棟	32t/棟		
火災焼失	木造	78t/棟	1		
人人从从大	非木造	98t/棟	_		

表 2.1.2 被害区分別の発生原単位

注. 全壊・半壊: 南海トラフ巨大地震は東日本大震災の処理実績に基づく。首都直下地震は内閣府中央 防災会議首都直下地震対策検討ワーキンググループによる「最終報告(平成25年12月19日公表)」 の被害想定から算定

出典:「災害廃棄物対策指針 技術資料」【技 1-11-1-1】(平成 26年3月、環境省)をもとに作成

表 2.1.3 被害区分別の種類別割合

被害区分		種類別割合(%)				
		可燃物	不燃物	コンクリート がら	金属くず	柱角材
液状化、	南海トラフ巨大地震	18	18	52	6.6	5. 4
揺れ、津波	首都直下地震	8	28	58	3	3
火災焼失	木造	0. 1	65	31	4	0
人人从从大	非木造	0. 1	20	76	4	0

出典:「災害廃棄物対策指針 技術資料」【技 1-11-1-1】(平成 26 年 3 月、環境省)をもとに作成

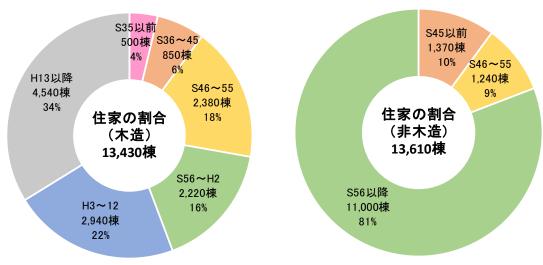


図 2.1.1 対象地域の建築年代

注. 合計には建築の時期「不詳」を含まない

出典:「住宅・土地統計調査」(平成25年、総務省統計局)をもとに作成

(3) 平成 29 年度災害廃棄物対策推進検討会における算定方法

環境省による平成 29 年度災害廃棄物対策推進検討会において、地域の床面積を反映する新たな災害廃棄物推計式の検討が行われた。

東日本大震災時の岩手県、宮城県の平均床面積と比べ、近畿地方では木造住宅の平均床面積が狭い。そのため、東日本大震災時の処理実績である原単位(全壊 117t/棟、半壊 23t/棟)と比べ、近畿地方の発生原単位の平均は少し小さくなる(全壊 105t/棟、半壊 21t/棟)。

一方、大阪府においては、非木造住宅の床面積が全国平均の約1.4倍あることから、発生原単位は全壊125t/棟、半壊25t/棟となる。このように府県ごとに床面積の特性は変化することから、本業務では、この新たな災害廃棄物算定方法を使用し、必要に応じてこれらの知見に対する修正も加えつつ、建物構造を反映した近畿地方における対象地域ごとの災害廃棄物発生量の詳細な推計を行う。

検討会では地震による検討は十分になされているが、風水害においては検討段階である ため、本検討においては地震災害にのみ新算出式を用いて推計を行う。

$Y = X1 \times a + X2 \times a \times b + X3 \times c + X4 \times d$

Y:災害廃棄物量(t)

Xn:損壊棟数(添え字1:全壊、2:半壊、3:床上浸水、4:床下浸水)

a,c,d:災害廃棄物発生原単位(t/棟)

b:半壊家屋からのごみ発生率:0~0.5(-)

※東日本大震災は0.2(処理実績より算出)、熊本地震は0.5(実行計画より算出)

災害廃棄物発生原単位

 $a = a1 \times A1 \times r1 + a2 \times A2 \times r2$

a1:木造原単位(t/m2) 【木造0.6+α(t/m2)】

※ α =過去の処理実績から求まる公物等上乗せ処理量

a2:非木造原単位(t/m2)【非木造1.2+α(t/m2)

※α =過去の処理実績から求まる公物等上乗せ処理量

A1:木造床面積(m2) 【=95.4m2(全国平均)固定資産台帳から引用】

A2: 非木造床面積(m2) 【=<u>301.4</u>m²(全国平均)固定資産台帳から引用】

r1:木造被害率(-) 全被害の木造、非木造の内訳

r2:非木造被害率(一) ·東日本大震災:木造0.85、非木造0.15

・南海トラフ巨大地震の被害想定:木造0.9、非木造0.1

c: 床上浸水家屋からの災害廃棄物発生原単位(t/棟)【=4.6 t/棟】

d: 床下浸水家屋からの災害廃棄物発生原単位(t/棟)【=0.62 t/棟】

図 2.1.2 検討会で提示された新たな推計式

出典:「資料 1-1 (別添 1) 災害廃棄物発生量の推計精度向上のための方策検討」(平成 30 年 3 月 6 日、環境省)

2.1.2 風水害

(1) 算定式

風水害は、災害廃棄物対策指針に示された「環境省が示す方式」を採用した。

【環境省が示す方式】

◆災害廃棄物発生量(t)=建物被害棟数(棟)×発生原単位(t/棟)×種類別割合(%)

(2) 発生原単位

災害廃棄物対策指針で示された発生原単位を下表に示す。なお、風水害の被害区分である「床上浸水」及び「床下浸水」による災害廃棄物は、建物解体によるがれき等よりも、 浸水に伴う片付けごみと畳・敷物類等からなる。

表 2.1.4 被害区分別の発生原単位

被害区分	発生原単位
全壊	117t/棟
半壊	23t/棟
床上浸水	4.60t/世帯
床下浸水	0.62t/世帯

注. 災害廃棄物対策指針 技術資料において、南海トラフ巨大地震の発生原単位として床上浸水: 4.60t/世帯、床下浸水: 0.62t/世帯が示されている。本検討では風水害による発生原単位として、南海トラフ巨大地震の発生原単位として示されている床上浸水、床下浸水の原単位を採用した

出典:「災害廃棄物対策指針 技術資料」【技 1-11-1-1】(平成 26 年 3 月、環境省)をもとに作成

(3) 風水害による被害区分判定方法

下記の①~②をもとに、風水害の被害区分判定の基準とする浸水深を設定した。

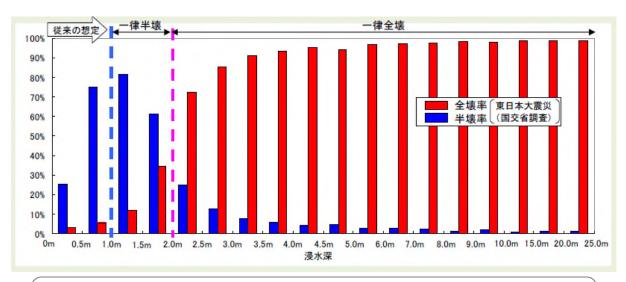
表 2.1.5 被害区分判定の基準とする浸水深

被害区分	浸水深
全壊	2.0m以上
半壊	1.5m 以上 2.0m 未満
床上浸水	0.5m 以上 1.5m 未満
床下浸水	0.5m 未満

出典:「災害廃棄物対策指針 技術資料」【技 1-11-1-1】(平成 26 年 3 月、環境省)をもとに作成

①災害廃棄物対策指針

災害廃棄物対策指針では、津波による被害として下表に示す区分を示している。


表 2.1.6 浸水深別の被害区分

浸水深	被害区分				
1.5m 以上	全壊判定、半壊判定については内閣府(2012)資料に記載の考 え方を用いる				
0.5m 以上 1.5m 未満	床上浸水				
0.5m 未満	床下浸水				

出典:「災害廃棄物対策指針 技術資料」【技 1-11-1-1】(平成 26 年 3 月、環境省)をもとに作成

②内閣府(2012)資料

内閣府が平成24年8月29日に発表した「南海トラフの巨大地震に関する津波高、浸水域、被害想定の公表について」では、津波による建物被害について、下図に示す内容がまとめられている。

「東日本大震災による被災現況調査結果について(第1次報告)」(国土交通省、平成23年8月4日)による浸水深ごとの建物被災状況の構成割合を見ると、浸水深2.0mを超えると全壊となる割合が大幅に増加する(従来の被害想定では浸水深2.0m以上の木造建物を一律全壊としており、全体として大きくは変わらない傾向である)。

図 2.1.3 東日本大震災で得られた全壊棟数と浸水深の関係

出典:「南海トラフの巨大地震に関する津波高、浸水域、被害想定の公表について 資料 2-2 建物被害・ 人的被害の被害想定項目及び手法の概要」(平成 24 年 8 月、内閣府南海トラフ巨大地震対策検討ワーキンググループ)

(http://www.bousai.go.jp/jishin/nankai/nankaitrough_info.html) をもとに作成

(4) 建物被害棟数の推計手順

国土地理院が公表している基盤地図情報の建物データ(平成30年7月3日時点)と対象地域の想定浸水深から、建物被害として、全壊、半壊、床上浸水、床下浸水の被害棟数を推計する。

【推計手順】

- ① 対象地域内の建物形状データを抽出する。
- ② 建物形状データの中心点をポイント化し、GISデータとして整備する。
- ③ 作成した建物ポイントと浸水深データを GIS 上で重ね合わせ、建物ポイント位置における浸水深データの浸水深を建物の浸水深として抽出する。
- ④ 表 2.1.6 浸水深別の被害区分に基づいて各建物の被害区分を行い、被害区分別の 建物棟数を集計する。

図 2.1.4 被害区分別の建物棟数の推計手順イメージ

2.2 災害廃棄物発生量の推計結果

京都府における地震による被害想定の結果のうち、対象地域では津波被害の影響は想定されないことから対象地域で最も大きい被害が想定される生駒断層帯地震を対象とした。

また、地域内で想定される河川氾濫が発生した場合の災害廃棄物(片付けごみ、解体ごみ)及び仮設トイレ等からの汲み取りし尿の発生量を推計した。

2.2.1 地震による災害廃棄物発生量の推計

(1) 地震災害による被害想定結果

京都府が実施した「京都府地震被害想定調査」(平成 20 年、京都府)による被害想定結果を下表に示す。

表 2.2.1 生駒断層帯地震による被害想定結果

出典:「京都府地震被害想定調査結果」(平成20年、京都府)をもとに作成

(2) 地震災害による災害廃棄物発生量の推計

「環境省が示す方式」に基づいて算出した被害区分別の災害廃棄物発生量及び、種類別の災害廃棄物発生量を下表に示す。

種類別の災害廃棄物発生量は、全壊・半壊を足し合わせた災害廃棄物発生量と、火災焼失による災害廃棄物発生量にそれぞれ表 2.1.3 被害区分別の種類別割合を掛け合わせることで算出した。

 災害種別
 災害廃棄物発生量(千t)

 文字種別
 全壊
 半壊
 火災焼失
 合計

 生駒断層帯地震
 939.5
 167.2
 117.0
 1,223.7

表 2.2.2 被害区分別の災害廃棄物発生量

表 2.2.3 種類別の災害廃棄物発生量

		建	物解体由来(千	- t)		
災害種別	可燃物	不燃物	コンクリート がら	金属	柱角材	合計
生駒断層帯地震	199.3	275.1	611.8	77.7	59.8	1,223.7

注. 種類別の災害廃棄物発生量は表 2.1.3 の種類別割合に基づき算出

(3) 平成 29 年度災害廃棄物対策推進検討会の算定方法による試算結果

平成29年度災害廃棄物対策推進検討会において検討された算定方法(以下、「新算出式」という。)を用いて災害廃棄物発生量の算出を行った。パラメータの設定パターンを表2.2.4、設定パターン別災害廃棄物発生量を表2.2.5に示す。

発生量として、以下の3パターンによる計算結果を示した。

- ・パターン1:災害廃棄物対策指針(平成30年3月、環境省)に示される原単位による発生量(再掲)
- ・パターン 2 : 新算出式を用いた災害廃棄物対策指針算出式の再現パラメータの設定に よる災害廃棄物発生量
- ・パターン3:近年の甚大災害から求まる公物等上乗せ処理量(α)と半壊率(b)の 設定による災害廃棄物発生量

床面積は住宅・土地統計調査による京都府の平均床面積、住宅被害率の内訳は南海トラフ巨大地震の被害想定から木造90%、非木造10%とした。

パターン1、パターン2は、パターン2の発生量が少ない結果となった。パターン1は東日本大震災による原単位であり、岩手県、宮城県の床面積を反映した原単位である。対象地域の床面積は岩手県、宮城県平均の床面積(表 2.2.6)より狭いことから、対象地域の床面積(表 2.2.5)を反映したパターン2はパターン1と比較して発生量が少なく算出された。

また、パターン 3 は東日本大震災、平成 28 年熊本地震などの近年の甚大災害による処理実績から求まる公物等上乗せ処理量、半壊率を考慮した値である。公物等上乗せ処理量 (α) 、半壊率 (b) の値 $(\alpha=0.4,b=0.3)$ がいずれも東日本大震災処理実績による値 $(\alpha=0.1,b=0.2)$ を上回るため、パターン 1、2 を上回る発生量となった。

対象地域における甚大災害が発生した際に想定される災害廃棄物発生量は、 $945\sim1,359$ 千 t となる。

	パターン	パラメータ	特徴
1		全壊:117t/棟 半壊:23t/棟	東日本大震災の実績を考慮
2	災害廃棄物対策指針 による方法の再現	$1 \alpha = 0.1 \ b = 0.2$	地域性(建物構造別床面積)を考慮 地域の木造面積狭いと発生量は少なく、木造面積が広いと発生量は多い傾向
3	近年の甚大災害 による再現値	$1 \alpha = 0 1 b = 0 3$	甚大災害事例から公物等発生量及び半壊率がパタ―ン2よりも多いため、 発生量が多い傾向

表 2.2.4 パラメータの設定パターン

注. α:近年の甚大災害から求まる公物等上乗せ量、b:半壊率

表 2.2.5 設定パターン別災害廃棄物発生量

災害種別	被害量	被害量(棟) 平均床面積(㎡)		住宅被害率(%)		パターン(千t)			
	全壊	半壊	木造	非木造	木造	非木造	1	2	3
生駒断層帯地震	9,530	7,270	81.3	268.1	90%	10%	1,224	945	1,359

注. 新算出式においては建物被害による全壊と、火災焼失による建物被害の区別を行っていないため、被害量(棟)における「全壊」は建物被害による全壊棟数と、火災焼失棟数の合計値である

表 2.2.6 参考 岩手県、宮城県の床面積

都道府県名	床面積 (m²)		
	木造	非木造	
岩手	108. 1	250. 7	
宮城	94. 3	331. 2	
岩手、宮城平均	101. 2	291.0	

2.2.2 風水害による災害廃棄物発生量の推計

(1) 風水害による被害想定結果

推計結果は下表のとおりであった。

表 2.2.7 風水害による被害想定結果

			建物被害(棟)		
災害種別	全壊	半壊	床上浸水	床下浸水	合計
木津川	6,769	592	913	656	8,930

(2) 風水害による災害廃棄物発生量の推計

「環境省が示す方式」に基づいて算出した被害区分別の災害廃棄物発生量を下表に示す。 風水害による災害廃棄物発生量は約810千tとなる。

表 2.2.2 の地震による災害廃棄物発生量推計結果と比較すると、対象地域では、「生駒 断層帯地震」の約1,224 千 t と比べて65%程度の災害廃棄物が発生することが推計された。

また、風水害による災害廃棄物は、被害が全壊・半壊の場合は建物解体による災害廃棄物が発生するが、床上浸水及び床下浸水による災害廃棄物は片付けごみと畳によるものである。そのため、片付けごみと畳以外(建物解体由来のみ)の風水害の種類別の災害廃棄物発生量は、全壊及び半壊による災害廃棄物発生量をもとに算出した。

なお、床上浸水、床下浸水による片付けごみは、「2.4 片付けごみ発生量の推計(試算)」 において算出した。

一般的に風水害の災害廃棄物は、漂着した片付けごみ、流木等のほか、浸水により使用できなくなった電気製品や畳、布団などの大型ごみが発生する。水分を多く含んでおり、 腐敗しやすく、悪臭・汚水を発生することに留意が必要である。

表 2.2.8 被害区分別の災害廃棄物発生量【風水害】

《字话则	災害廃棄物発生量(千t)					
災害種別	全壊	半壊	床上浸水	床下浸水	合計	
木津川	792.0	13.6	4.2	0.4	810.2	

表 2.2.9 種類別の災害廃棄物発生量【風水害】(建物解体由来のみ)

			建物解体	由来(千t)		
災害種別	可燃物 (18%)	不燃物 (18%)	コンクリート がら (52%)	金属 (6.6%)	柱角材 (5.4%)	合計
木津川	145.0	145.0	418.9	53.2	43.5	805.6

注. 建物解体由来とは、全壊、半壊の災害廃棄物発生量による

2.3 し尿発生量の推計

2.3.1 推計方法

し尿の推計方法には、「災害廃棄物対策指針 技術資料 1-11-1-2」(平成 26 年 3 月、環境省)による方法と、「巨大災害発生時における災害廃棄物対策のグランドデザインについて 中間とりまとめ(案)」(平成 26 年 3 月、環境省巨大地震発生時における災害廃棄物対策検討委員会)(以下、「グランドデザイン」という。)の 2 つの方法があり、本業務では想定避難者数から算出可能なグランドデザインで示された方法に基づいて推計を行う。

【グランドデザイン】

- ◆避難所におけるし尿処理需要量=①仮設トイレ需要者数×②1 人 1 日当たりし尿排出量 ×③し尿収集間隔日数
 - ①仮設トイレ需要者数(人・日)=地震被害想定等で想定されている避難者数
 - ②1人1日当たりし尿排出量=1.7L/人・日
 - ③し尿収集間隔日数=3日

【指針】

- ◆し尿収集必要量=災害時におけるし尿収集必要人数×1人1日平均排出量 = (①仮設トイレ必要人数+②非水洗化し尿収集人口)
 - ×31人1日平均排出量
 - ①仮設トイレ必要人数 = 避難者数 + 断水による仮設トイレ必要人数 避難者数 = 地震被害想定等で想定されている避難者数 断水による仮設トイレ必要人数 = {水洗化人ロー避難者数×(水洗化人口/総人口)} ×上水道支障率×1/2*
 - 水洗化人口 = (下水道人口、コミュニティプラント人口、農業集落排水人口、浄化槽人口) ※「1/2」は、断水により仮設トイレを利用する住民は、上水道が支障する世帯のうち 1/2 の住民と仮定。
 - ②非水洗化し尿収集人口=汲取人口*一避難者数×(汲取人口/総人口) ※汲取人口=計画収集人口
 - ③ 1人1日平均排出量=1.7L/人·日

2.3.2 推計結果

(1) 避難所におけるし尿処理需要量

グランドデザインで示された方法に基づいて、し尿処理需要量を算出した結果を下表に 示す。

		2		
対象地震	対象地震 避難者数 (人)		避難所における し尿処理需要量 (L)	
生駒断層帯地震	30, 870	52, 479	157, 437	

表 2.3.1 し尿処理需要量

注. 上記検討では地震被害想定による避難所への避難者数をもとに検討を行っている。風水害の場合、 し尿の収集は避難所からのみでなく、浸水により溢れた各戸の汲み取り便槽からも収集する必要が あることを考慮する。

出典:避難者数…「京都府地震被害想定調查」(平成20年、京都府)

(2) 避難所における仮設トイレ必要設置数検討

①推計方法

各避難所における仮設トイレの必要数を検討する。

災害廃棄物対策指針において仮設トイレ必要設置数の算出方法が検討されている。また、「避難所におけるトイレの確保・管理ガイドライン」(平成 28 年 4 月、内閣府)等においても仮設トイレ必要設置数に関する考え方が述べられている。

本検討では指針に基づく方法と内閣府等によって述べられる仮設トイレ必要設置数の考え方を用いて仮設トイレ必要設置数を検討する。

【指針】

◆仮設トイレ必要設置数=仮設トイレ必要人数(避難者数)/仮設トイレ設置目安 仮設トイレ設置目安=仮設トイレの平均的容量/し尿の1人1日平均排出量/収集計画

仮設トイレの平均的容量:	400	L
し尿の1人1日平均排出量:	1.7	L/人·日
収集計画:	3	日に1回の収集

【「避難所におけるトイレの確保・管理ガイドライン」等による考え方】

◆仮設トイレ必要設置数の考え方

「避難所におけるトイレの確保・管理ガイドライン」では、災害発生当初は避難者約50人当たり1基、避難が長期化する場合は約20人当たり1基の確保を目安としている。

自治体により、確保可能な災害時用トイレの数は異なる。また、避難者の状況や被害の程度により必要個数が異なる。そのため、本検討では過去の災害による事例をもとに、多少の不足が想定される 100 人/基から混乱なく使用可能な 20 人/基を目安として仮設トイレ必要設置数の算出を行った。

災害名	仮設トイレの数	状況等
北海道南西沖地震	約20人に1基	混乱なし
阪神・淡路大震災	発災直後は約100人に1基	100 人/基:少し苦情あり
W 件 「	その後、約75人に1基	75 人/基:ほとんど苦情なし
雲仙普賢岳噴火災害	約 120~140 人に 1 基	不足気味

出典:「震災時のトイレ対策」(平成7年、(財)日本消防設備安全センター)、

「避難所におけるトイレの確保・管理ガイドライン」(平成28年4月、内閣府)をもとに作成

②推計結果

生駒断層帯地震の避難者数に対する仮設トイレ必要設置数の検討結果を下表に示す。

表 2.3.2 生駒断層帯地震による避難者数に対する仮設トイレ必要設置数

災害種別	避難者数	指針(基)	仮設トイレ使用人数をもとにした 仮設トイレ必要設置数(基)			
	(人)	(圣)	100人/基	75人/基	20人/基	
生駒断層帯地震	30, 870	394	309	412	1, 544	

出典:避難者数…「京都府地震被害想定調査」(平成20年、京都府)

③対象地域における各種トイレ保有数

対象地域における各種トイレ保管場所ごとの保有数を整理した。

保管場所の被災があった場合は、保管している各種トイレ等の使用、持ち出しが困難 になる可能性がある。

また、発災当初に避難所のトイレが不足する場合や使用が出来ない場合は、民間事業者からの仮設トイレの借用も考えられる。

避難所のトイレが復旧するまでの期間や仮設トイレ設置までの期間、簡易トイレ等を 使用することが考えられる。

表 2.3.3 市内各種トイレ等備蓄数

種別	備蓄状況
簡易トイレ	20台
マイレット	70,000セット
(職員用) インスタントトイレ処理セット	4,000セット
(職員用) プラストイレ	20個
プラストイレ	450個

出典:市提供資料をもとに作成

2.4 片付けごみ発生量の推計(試算)

片付けごみは、2.2に示した災害廃棄物発生量の内数として算出する。

片付けごみとは、災害により発生した廃棄物のうち、全壊・半壊を免れた家屋や浸水により被害を受けた家屋などから発生する、災害時に破損したガラス食器類、瓦、ブロック、畳、家具、家電等を指す。通常の生活ごみや、避難生活者による避難所ごみとは異なる。

発生時期としては、図 2.4.1 に示すとおり、風水害による片付けごみは、浸水による腐敗等のため、発災直後に多量に排出される傾向があり、地震による片付けごみは風水害と比べ浸水による腐敗等が無いため発災から 1 箇月程度の間で排出される傾向がある。

片付けごみは発災初期の段階から処理に係るニーズが発生するため、住民への分別方法 や排出方法などの広報の徹底や、必要であればボランティアの要請等を行い、滞りなく処 理を行う必要がある。

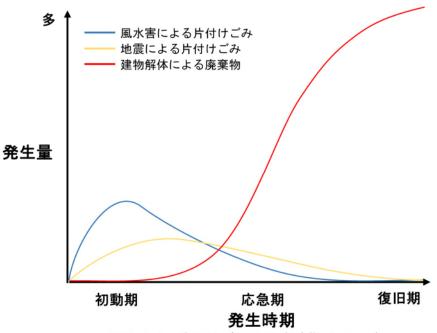


図 2.4.1 片付けごみの発生時期イメージ

2.4.1 地震災害

(1) 推計条件

①片付けごみ排出の対象者

地震災害時の片付けごみ量の算出は、当面必要な仮置場の調達等のため、災害発生後 に簡便に試算できることが望ましい。

そのため、避難所の最大時の避難者数を災害により自宅が全壊・半壊・一部損壊した被災者ととらえ、最大時避難者数を基本として試算する。避難者の自宅の被害状況は様々であり、発生量の把握は困難であるが、これまでの災害対応からすると、避難者は数日後には避難所から自宅等に通って整理を行うと想定されるため、避難者の最大数=片付けごみの対象の避難者数と想定する。

そのうえで、対象地域の平均世帯人員で除すことで、片付けごみの対象世帯数とする。

②1世帯当たりから発生する片付けごみの量

片付けごみの特徴を、風水害と地震で比較した場合、風水害による片付けごみは水分や土砂を含むため、地震による片付けごみと比べ量が多いと推定される。そのため地震による片付けごみは、風水害による床上浸水の発生原単位である 4.6t/世帯より下回ると考えられる。

また、平成 28 年に発生した熊本地震による事例では、集合住宅の片付けごみの平均が約 0.5t/世帯であることが確認されている(なお、一戸建てから発生する、瓦やブロックなど外構等は含まれていない)。

以上より、本検討では片付けごみの発生量に幅を持たせ、下記2ケースで検討した。

表 2.4.1 片付けごみの発生想定

ケース	片付けごみ発生想定	発生原単位
1	排出量が最少となる場合:地震災害(集合住宅)	0.5t/世帯
2	排出量が最大となる場合:風水害(床上浸水)	4.6t/世帯

出典:ケース 1・・・熊本地震の現地調査より原単位を作成、ケース 2・・・「災害廃棄物対策指針 技術資料」 【技 1-11-1-1】(平成 26 年 3 月、環境省)をもとに作成

(2) 算定式

地震による片付けごみの発生量は下記の式より算出する。

【片付けごみ発生量】

- ◆地震による片付けごみ発生量=①被災世帯数 × ②発生原単位
 - ①被災世帯数=避難者数 ÷ 平均世帯人員
 - ✓ 平均世帯人員:住民基本台帳人口(総務省)をもとに算出
 - ②発生原単位

片付けごみ発生想定ケース	発生原単位
最小	0.5t/世帯
最大	4.6t/世帯

(3) 推計結果

(1)、(2) で示した方法に基づいて地震による片付けごみの発生量を算出した。地震による片付けごみは、対象地域で 6,378~58,679t の発生量となった。

表 2.4.2 片付けごみの発生量

災害種別	避難者数	平均 世帯人員	片付けごみ 世帯数	片付ける	ごみ (t)
	(人)	(人/世帯)	(世帯)	0.5t/世帯	4.6t/世帯
生駒断層帯地震	30, 870	2. 42	12, 756	6, 378	58, 679

注. 平均世帯人員…「平成30年1月1日住民基本台帳人口」(総務省)より算出し、小数第3位を切り 上げて記載

出典:避難者数…「京都府地震被害想定調查」(平成20年、京都府)

2.4.2 風水害

(1) 推計条件

①対象とする被災建物

片付けごみは、風水害により被災した世帯から発生する。被災の程度は、全壊・半壊・ 床上浸水・床下浸水の4つの段階が想定される。全壊の建物は全量が解体による廃棄物 として排出されるため、片付けごみの発生はないと想定する。

以上より、本検討では半壊棟数、床上浸水棟数、床下浸水棟数から片付けごみが発生 するものとし、その発生量を推計する。

②1 世帯当たりから発生する片付けごみの量

災害廃棄物対策指針に示された床上浸水、床下浸水の発生原単位を下表に示す。 また、床上以上の浸水が想定されている半壊の建物からは、床上浸水と同様に発生することを想定し、床上浸水と同じ発生原単位 4.6t/世帯を用いることとする。

表 2.4.3 床上浸水、床下浸水の発生原単位

被害想定	発生原単位
床上浸水	4.60t/世帯
床下浸水	0.62t/世帯

出典:「災害廃棄物対策指針 技術資料」【技 1-11-1-1】(平成 26 年 3 月、環境省)をもとに作成

(2) 算定式

風水害による片付けごみの発生量は下記の式より算出する。

【片付けごみ発生量】

- ◆風水害による片付けごみ発生量=①被災棟数×発生原単位
 - ✓ 被災棟数:半壊棟数、床上浸水棟数、床下浸水棟数※風水害は1階部分が被災すると想定し、世帯数=棟数とした
 - ✓ 発生原単位

被害想定	発生原単位
半壊	4.60t/棟
床上浸水	4.60t/棟
床下浸水	0.62t/棟

注. 半壊は、23t/棟のうち 4.6t/棟が片付けごみとして排出されると仮定した

✓ 片付けごみ=半壊・床上浸水・床下浸水の建物による片付けごみ発生量

(3) 推計結果

(1)、(2) で示した方法に基づいて風水害による片付けごみの発生量を算出した。風水害による片付けごみは、対象地域で7,330tの発生量となった。

表 2.4.4 片付けごみの発生量(風水害)

***	全任司	初	災棟数(棟	į)		片付け	ごみ(t)	
火	と害種別	半壊	床上浸水	床下浸水	半壊	床上浸水	床下浸水	合計
7	木津川	592	913	656	2,723	4,200	407	7,330

2.4.3 片付けごみ発生量(試算)推計結果

2.4.1、2.4.2 において、地震災害、風水害に伴い発生する片付けごみ発生量の推計を行ったが、片付けごみ発生量に関する検討は試算段階であり、下記の問題点がある。

●片付けごみ発生量推計における課題

そのため、今後更なる検討が必要である。

- ・今回の検討では、全壊棟数は建物解体となるため、片付けごみ発生量検討の対象と していない。
- ・避難者の中には全壊家屋の避難者が含まれるため、片付けごみ発生量に含まれてしまう。
- ・避難されていない一部損壊家屋からの片付けごみは、発災直後にその棟数把握が困 難であるため、発生量に含まれない。
- ●発災時のデータの抽出方法に関する統計上の課題
 - ・今回の検討において、地震災害では避難者、風水害では半壊、床上浸水、床下浸水 の棟数より片付けごみを算出している。
 - ・災害時にこれらの数値をいかに早期に収集し、片付けごみ発生量の推計を行うかが 課題となる。

(参考) 一部損壊の発生原単位の試算

平成30年6月に発生した大阪府北部を震源とする地震、平成30年台風第21号による住家被害は、一部損壊棟数が98~99%と非常に多くを占めた。このため、地震災害、風水害による一部損壊による片付けごみ発生量の推計は、今後、重要になると考えられることから、これまでの被災実績をもとに発生原単位の試算を行った。

1. 一部損壊の定義

一部損壊は、「災害に係る住家の被害認定基準運用指針」(平成30年3月、内閣府(防災担当))では、地震災害、風水害(水害)ともに「半壊に至らない、住家の損害割合20%未満」とされている。風水害では目安として「床下浸水」が例示されている。

一部損壊の定義 出典 半壊に至らない。地震:住家の損害割合 20%未満、風水害: 災害に係る住家の被害認定基準 床下浸水 運用指針、平成30年3月、内閣 府(防災担当) H30 年 7 月豪雨に係る災害廃棄 住家が損壊しているが使用できる程度のもの 物処理事業の補助対象拡充につ いて (周知)、平成 30 年 8 月 3 日 事務連絡、環境省 屋根の瓦の一部が破損した、外壁の一部が損傷した、窓ガラス 建物被害に関する相談、枚方市 が数枚程度割れたなど。損害割合が20%未満と自己判定。 ホームページ 基礎 (基礎部分の総延長の4割以下の損傷)、屋根 (棟瓦が全 被災された住家の被害認定調査 面的にずれ、破損、落下し、他の瓦のずれも著しい)、外壁(仕 を行っています、吹田市ホーム 上げの剥離が生じている)が一部損壊した木造住宅など、全壊 ページ や半壊に至らないものを「一部損壊」といい、住家の損害割合 が 20%未満であること

表 1 一部損壊の定義例

2. 一部損壊の発生原単位(想定)

一部損壊の発生原単位は環境省などで定められていない。

地震災害は大阪府北部を震源とする地震における枚方市の事例、平成28年10月の鳥取県の事例から、一部損壊の発生原単位は0.03~0.2t/棟と想定した。

風水害は、水害の一部損壊について、前述のとおり、「床下浸水」程度とされていることから、床下浸水の発生原単位である 0.62t/棟と想定した。平成 30 年台風第 21 号における田辺市の事例では約 0.4t/棟であった。

鳥取県、枚方市の事例における種類別割合から、一部損壊の災害廃棄物の内訳は、瓦、 コンクリートがら、石膏ボードなどで70%前後を占める。

表 2 一部損壊の発生原単位 (想定)

災害	発生原単位	備考
地震災害	0.03~0.2 t/棟	・大阪府北部を震源とする地震時の枚方市(住家被害:全壊1棟、 半壊10棟、一部損壊5,831棟)の災害廃棄物発生量 約174t が、すべて一部損壊によるものとして原単位を算出(0.03t/棟) ・鳥取県中部地震の一部損壊棟数(約15,000棟)の発生量をもと に0.2t/棟と試算(鳥取県は片付けごみの位置づけ)
風水害	0.62 t/棟	・災害に係る住宅の被害認定基準運用指針における設定(一部損壊 : 床下浸水)から想定 ※平成 30 年台風第 21 号による風水害時の田辺市(住家被害:全壊 10 棟、半壊 5 棟、一部損壊 502 棟)の災害廃棄物発生量 約200t が、すべて一部損壊によるものとすると、約 0.4t/棟となる。

出典: 枚方市事例···枚方市提供資料、鳥取県···「鳥取県災害廃棄物処理計画 資料編」(平成 30 年 4 月、鳥取県)、田辺市事例···田辺市提供資料

表 3 鳥取県、枚方市における種類別割合

【鳥取県】

種類	鳥取県
瓦	35%
コンクリートがら	23%
石膏ボード混合物	16%
可燃性粗大ごみ	3%
可燃ごみ	2%
木くず	11%
不燃性粗大ごみ	2%
不燃ごみ	6%
その他	3%
計	100%

【枚方市】

	搬入量(t)	種類別割合
瓦礫類	118.76	67.96%
小型家電	0.06	0.03%
金属類	0.51	0.29%
粗大ごみ	51	29.18%
家電4品目	4.43	2.53%
計	174.76	100.00%

注. 瓦礫類・・・コンクリート片(石・ブロック等混在)、瓦、スレート

注. 四捨五入の関係で計は100%にならない

出典: 枚方市事例···枚方市提供資料、鳥取県···「鳥取県災害廃棄物処理計画 資料編」(平成 30 年 4 月、鳥取県)

3. 災害廃棄物の処理可能量の検討

前章の推計結果に基づく対象地域における災害廃棄物の処理可能量を組成別に推計する。

3.1 一般廃棄物処理施設の処理能力の検討

3.1.1 焼却施設

焼却施設の処理可能量は、施設の稼働年数や処理能力(公称能力)等を考慮した「災害 廃棄物対策指針に示された方法」と、施設を最大限活用することを想定した「施設の稼働 状況を反映する方法」の2つの方法で算出した。

(1) 施設概要

対象地域では、枚方市と共同で可燃ごみ広域処理施設(以下、「新処理施設」という。)を計画中である。新処理施設は平成35年度以降に稼働予定であることから、既存施設、新処理施設それぞれの処理可能量の算出を行う。

①既存施設の施設概要

対象地域内の焼却施設の施設概要は下表のとおりである。

表 3.1.1 施設概要 (焼却施設)

施設名	使用開始 年度	炉数	処理能力 (t/日)	処理方式	炉型式	被災 震度	洪水浸水 想定(m)
京田辺市環境衛生センター 甘南備園 焼却工場	1986	2	80	流動床式	準連続運転	6強	0

注. 施設の被災震度は生駒断層帯地震による

出典:「一般廃棄物処理実態調査結果」(平成30年4月10日、環境省)をもとに作成

②新処理施設の施設概要

平成35年度以降に稼働予定の新処理施設の施設概要は下表のとおりである。

新処理施設は甘南備園焼却工場の後継施設として稼働予定のため、平成 35 年度以降 は新処理施設の単独運用となる。

表 3.1.2 施設概要 (新処理施設)

施設名	使用開始 年度	炉数	処理能力 (t/日)	災害廃棄物 処理量 (t/日)	処理方式	被災震度	洪水浸水 想定(m)
可燃ごみ広域処理施設	2023	-1	168	12	スト一力式	6強	0
京田辺市分	2023	1	64	6	(可動)	り短	"

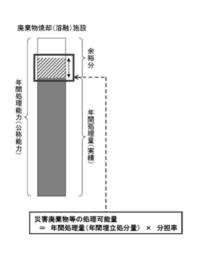
注. 施設の被災震度は生駒断層帯地震による

出典:「可燃ごみ広域処理施設整備基本計画」(平成28年3月、枚方市、京田辺市)をもとに作成

(2) 推計方法

焼却施設の処理可能量の推計方法を①、②に示す。

①災害廃棄物対策指針の算出方法


年間処理量(実績)に、分担率を考慮して算出する。分担率は、現状の稼働(運転)状況に対する負荷を考慮して災害廃棄物等の受け入れに制約となる可能性のある複数の条件をもとに3段階のシナリオ(安全側となる低位シナリオ、災害廃棄物等の処理を最大限行うと想定した高位シナリオ、その中間となる中位シナリオ)を設定し、算出する。

【指針】

◆処理可能量(t/3年) *=年間処理量(実績)×分担率

※大規模災害を想定し、3年間処理した場合の処理可能量(t/3年)について算出する。ただし、事前調整等を考慮し実稼働期間は2.7年とする。

設5	設定条件			高位 シナリオ
①稼働年数	稼る劣に力定が対 働施化よのし長 を設める低ないい を製理を年設る は年等能想数を。	20 年超 の施設を 除外	30 年超 の施設を 除外	制約なし
②処理能力 (公称能力)	災理考規理る対象の大人のでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	100t/日 未満の 施設を 除外	50t/日 未満の 施設 除外	30t/日 未満の 施設を 除外
③処理能力 (公称能力) に対する余 裕分の割合	あ割合で全球の を対象とする。	20%未満 の施設を 除外	10%未満 の施設を 除外	制約なし ※
④年間処理量 の実績に対 する分担率	通廃焼 焼 を 処に 本 の と 受 し (実 分 か と し (ま る か ま か か と で ま ま か か か か ま か か か か か か か か か か か か	最大で 5%	最大で 10%	最大で 20%

出典:「災害廃棄物対策指針 技術資料」【技 1-11-2】(平成 26 年 3 月、環境省)をもとに作成

②施設の稼働状況を反映する算出方法 (最大利用方式)

施設の実処理能力等の稼働状況を反映する算出方法は、年間最大処理能力から年間処理量(実績)を差し引くことで算出する。なお、災害廃棄物の処理は、発災後最大で概ね3年間の処理となるが、既往処理施設は、被災の状況により、復旧までに時間を要すことが懸念される。そのため、稼働日数を減少させて処理可能量を算定した。

【施設の稼働状況を反映する算出方法(最大利用方式)】

- ◆処理可能量(t/3 年)=①災害時対応余力×②年間稼働率〔1 年目〕 +災害時対応余力×年間稼働日数×2〔2~3 年目〕
- ①災害時対応余力(t/年) =年間最大処理能力(t/年) -年間処理実績(t/年) 年間最大処理能力(t/年) =日処理能力(t/日) ×年間稼働日数(日) 年間稼働日数=実稼働日数
- 2年間稼働率

施設位置の震度 年間稼働率 震度 6 弱 被災後 1 年間は 97% 震度 6 強以上 被災後 1 年間は 79%

出典:「災害廃棄物対策指針 【技術資料 1-11-2】」 (平成 26 年 3 月、環境省)をもとに作成

③処理期間=3年

年間の理能力 年間処理量 (実績)

出典:市提供データ,「一般廃棄物処理実態調査結果」(平成30年4月10日、環境省)

(3) 推計結果

①既存施設の処理可能量

現在稼働中の焼却施設の処理可能量を示す。災害廃棄物対策指針の算出方法(高位)では発災後3年間で約9.1千t、最大利用方式では発災後3年間で約12.7千tの処理可能量が見込まれる。災害時は、施設の能力、稼働状況を考慮し採用する処理可能量を決定する必要がある。

表 3.1.3 処理可能量	(災害廃棄物対策指針の算出方法)
---------------	------------------

	年間処理量	加班公士	処理可能量(t/2.7年)			
施設名	(実績) (t/年度)	処理能力 (t/日)	低位	中位	高位	
京田辺市環境衛生センター 甘南備園 焼却工場	16,880	80	-	-	9,115	

注. 大規模災害を想定し、3年間処理した場合の処理可能量(t/3年)について算出するが、事前調整等を考慮し実稼働期間は2.7年を設定する

出典:「一般廃棄物処理実態調査結果」(平成30年4月10日、環境省)をもとに作成

表 3.1.4 処理可能量(施設の稼働状況を反映する算出方法(最大利用方式))

施設名	被災震度	日処理 能力 (t/日)	年間稼働 日数(日)	年間最大 処理能力 (t/年)	年間処理 実績 (t/年度)	災害時 対応余力 (t/年)	災害時 対応余力 (t/3年)
京田辺市環境衛生センター 甘南備園 焼却工場	6強	80	268	21,440	16,880	4,560	12,722

注. 施設の被災震度は生駒断層帯地震による

注. 処理期間は、3年間処理した場合の処理可能量(t/3年)について算出するが、事前調整、施設被 災等を考慮し実稼働期間は年間稼働率を掛け合わせ設定する

出典:市提供データ、「一般廃棄物処理実態調査結果」(平成30年4月10日、環境省)をもとに作成

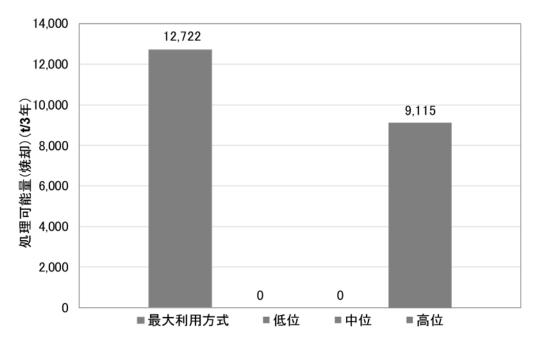


図 3.1.1 一般廃棄物焼却施設処理可能量

②新処理施設の処理可能量

新処理施設の処理可能量を示す。

新処理施設は、「可燃ごみ広域処理施設整備基本計画」(平成 28 年 3 月、枚方市、京田辺市)において施設の処理能力を定めるとともに、災害廃棄物の処理量も考慮している。そのため、災害時には計画されている災害廃棄物処理量で処理を行う。新処理施設による災害廃棄物処理量と処理期間 2.7 年(処理期間 3 年のうち 3 箇月を事前調整等による施設停止とする)における処理量を表 3.1.5 に示す。

「可燃ごみ広域処理施設整備基本計画」による災害廃棄物処理量は、現在稼働中の既存施設の処理可能量を下回ることから、災害時の処理についてあらかじめ調整を行う必要がある。

表 3.1.5 災害廃棄物処理量 (新処理施設計画量)

施設名		災害廃棄物	1(可燃ごみ)	考慮分
		t/日	t/年	t/2.7年
	可燃ごみ広域処理施設	12	3,360	9,072
	京田辺市分	6	1,680	4,536
		6	1,680	4,5

注. t/年は、新処理施設の年間稼働日数 280 日から算出

注. 大規模災害を想定し、3年間処理した場合の処理可能量(t/3年)について算出するが、事前調整等を考慮し実稼働期間は2.7年を設定する

(参考)

新処理施設の稼働状況を反映する算出方法(最大利用方式)による処理可能量を参考として以下に示す。

表 3.1.6 処理可能量 (施設の稼働状況を反映する算出方法 (最大利用方式))

	施設名	施設使用開始 年度	日処理能力 (t/日)	年間稼働 日数(日)	年間最大 処理能力 (t/年)	年間計画 処理量 (t/年度)	災害時 対応余力 (t/年)	災害時 対応余力 (t/3年)
可燃ごみ広	域処理施設(参考値)	2023	168	280	47,040	41,794	5,246	14,636
	京田辺市分	2023	64	280	17,920	15,572	2,348	6,551

注. 処理期間は、3年間処理した場合の処理可能量(t/3年)について算出するが、事前調整、施設被災等を考慮し実稼働期間は年間稼働率を掛け合わせ設定する

出典:「可燃ごみ広域処理施設整備基本計画」(平成28年3月、枚方市、京田辺市)をもとに作成

(4) 施設受入条件

施設能力を超える廃棄物の受入れは施設の故障等に繋がるため、十分に注意する必要がある。特に災害廃棄物は、通常の体制を超えた搬入が想定されることから、あらかじめ施設の受入条件を周知しておく必要がある。対象地域における施設受入条件を表 3.1.7 に示す。

表 3.1.7 受入条件

項目	条件					
種別	燃やすごみ、紙ごみ、プラ	ラスチック容器包装、破砕ごみ、直接埋立ごみ、危険ごみ・特殊ごみ				
	燃えるごみ (草、細い枝木含む) プラスチック容器包装	・45リットル以下で透明か白色半透明の袋にいれる ・竹は収集、持込不可 ・剪定枝は幹の太さが2cm以下のものは50cmの長さに切って燃やすごみとする ・45リットル以下で透明の名にいれる				
	破砕ごみ	・紙袋や、中身が完全に見えないものは収集不可 ・45リットル以下で透明か白色半透明の袋にいれる ・乾電池は不可 ・剪定枝は幹の太さが2cmから15cmのものは30cmの長さに切って破砕ごみとする				
形状等	直接埋立ごみ	・45リットル以下で透明か白色半透明の袋にいれる ・割れたものは紙袋に包んで出す				
	危険ごみ・特殊ごみ ・45リットル以下で透明か白色半透明の袋にいれる ・刃物等は紙袋に入れるかガムテープでくるむ					
	木類 (木枝・角材等)	 ・幹の太さ(角材縦横長さ)5cm以内 →ごみ袋に入る長さに切り燃えるごみ ・幹の太さ(角材縦横長さ)5cm~15cm以内 →ごみ袋に入る長さに切り燃えないごみ ・幹の太さ(角材縦横長さ)15cm以内、長さ2m以内 →直接搬入可能 				
留意事項	収集・処理できないもの	・産業廃棄物 ・建築資材(リフォームなどで出たごみ全般、扉、角材、壁材、石膏ボード、コンクリート、コンパネ、ウッドデッキなど) ・竹 ・塗料、燃料、オイル、LPガス、消化器 ・農機具、農業用薬剤(マルチ、畦シート、業務用草刈り機、コンバイン、農薬、肥料など) ・重量が著しく重いもの(ピアノ、耐火金庫など) ・仏具、神具(仏壇、神棚など) ・車、バイク用品(タイヤ、ホイル、バッテリー、バンパー、シート、ハンドル、マフラーなど) ・土 ・家電リサイクル法対象品(テレビ、エアコン、洗濯機、衣類乾燥機、冷蔵庫、冷凍庫)				

出典:市提供資料をもとに作成

(5) 破砕施設

災害時は、通常の焼却施設での処理に加え、破砕施設の使用も考えられる。対象地域で 所持している、破砕施設の概要、処理能力を表 3.1.8 に示す。破砕施設の受入条件は、表 3.1.7 の受入条件となる。

表 3.1.8 破砕施設概要

施設名称	破砕施	破砕能力 (t/日)				
	破砕ライン	粗大ごみ	5			
		不燃ごみ	6			
環境衛生センター甘南備園	リサイクルライン	缶類	2			
リサイクル工場		ペットボトル	1			
		剪定枝等ライン	2			
	合	計	16			

注. 1日5時間稼働

出典:市提供資料をもとに作成

3.1.2 最終処分場

最終処分場の処理可能量は、「災害廃棄物対策指針の算出方法」と施設の残余容量に合わせた「施設の稼働状況を反映した方法」の2つの方法で算出した。

(1) 施設概要

対象地域内の最終処分場の施設概要を下表に示す。

表 3.1.9 施設概要 (最終処分場)

施設名	埋立開始 年度	埋立終了 予定年度	処分場の 現状	被災震度	洪水浸水 想定(m)
京田辺市環境衛生センター 天王碧水園	2000	2025	埋立中	6強	0

注. 施設の被災震度は生駒断層帯地震による

出典:「一般廃棄物処理実態調査結果」(平成30年4月10日、環境省)

(2) 推計方法

最終処分場の処理可能量の推計方法を①、②に示す。

①災害廃棄物対策指針の算出方法

年間処理量(実績)に、分担率を考慮して算出する。分担率は、現状の稼働(運転) 状況に対する負荷を考慮して災害廃棄物等の受け入れに制約となる可能性のある複数 の条件をもとに3段階のシナリオ(安全側となる低位シナリオ、災害廃棄物等の処理を 最大限行うと想定した高位シナリオ、その中間となる中位シナリオ)を設定し、算出す る。

【指針】

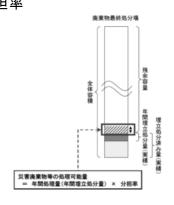
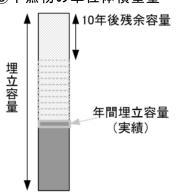

◆埋立処分可能量(t/2.7年)=年間埋立処理量(実績)×分担率

表 一般廃棄物最終処分場の処理可能量試算のシナリオ

設定条件	設定条件低位中位シナリオシナリオ		高位 シナリオ	
①残余年数	10 年未満の施設を除外			
②年間埋立処分量 の実績に対する 分担率	最大で 10%	最大で 20%	最大で 40%	

出典:「災害廃棄物対策指針 【技術資料 1-11-2】」

(平成26年3月、環境省)



②施設の稼働状況を反映した方法 (最大利用方式)

残余容量から年間埋立処分量(実績)の10年分を差し引くことにより算出する。

【施設の稼働状況を反映する算出方法(最大利用方式)】

- ◆10 年後残余容量 (m³) =①残余容量 (m³) -②年間埋立容量 (m³/年) ×10 年
- ◆10 年後残余容量(t)=10 年後残余容量(m³)×③不燃物の単位体積重量
 - ①残余容量 (m³): 現時点での残余容量
 - ②年間埋立容量 (m³): 現時点での年間埋立量
 - ③不燃物の単位体積重量=1.5 (t/m³)

(3) 推計結果

最終処分場の処理可能量を表 3.1.10、表 3.1.11 に示す。

災害廃棄物対策指針の算出方法(高位)では発災後3年間で約17.7千t、最大利用方式では発災後10年間で約78.9千tの処理可能量が見込まれる。

災害廃棄物対策指針による算出方法では、対象地域内の最終処分場は被災状況等により 低位・中位・高位シナリオの3種から処理可能量を選択し処理を行うことが可能である。

表 3.1.10 処理可能量(災害廃棄物対策指針の算出方法)

	埋立容量	建	処理可能量(t/2.7年)		
施設名	(覆土を含む) (m³/年度)	残余容量 (㎡)	低位	中位	高位
京田辺市環境衛生センター 天王碧水園	349	56,107	141	283	565

注. 大規模災害を想定し、3年間処理した場合の処理可能量(t/3年)について算出するが、事前調整等を考慮し実稼働期間は2.7年を設定する

出典:「一般廃棄物処理実態調査結果」(平成30年4月10日、環境省)

表 3.1.11 処理可能量 (施設の稼働状況を反映する算出方法 (最大利用方式))

施設名	埋立終了 予定	埋立容量 (覆土を含む) (㎡/年度)	残余容量 (㎡)	10年後残余容量 (最大利用方式) (㎡)	10年後残余容量 (最大利用方式) (t)
京田辺市環境衛生センター 天王碧水園	2025	349	56,107	52,617	78,926

出典:「一般廃棄物処理実態調査結果」(平成30年4月10日、環境省)

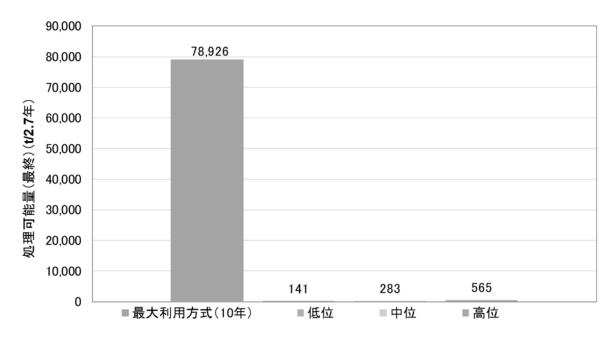


図 3.1.2 最終処分場処理可能量

3.2 災害廃棄物の処理可能量の検討

「生駒断層帯地震」ならびに風水害による災害廃棄物発生量の災害廃棄物処理フローを 示す。

発生した可燃物から焼却施設による余力、発生した不燃物から最終処分場による余力を 差し引いた災害廃棄物発生量が対象地域内で処理ができず広域処理が必要な量となる。

①既存施設の処理フロー

【生駒断層帯地震】

一般廃棄物処理施設を活用した場合、可燃物の 186.6 千 t、不燃物の 198.8 千 t の処理について広域処理等の検討が必要である。

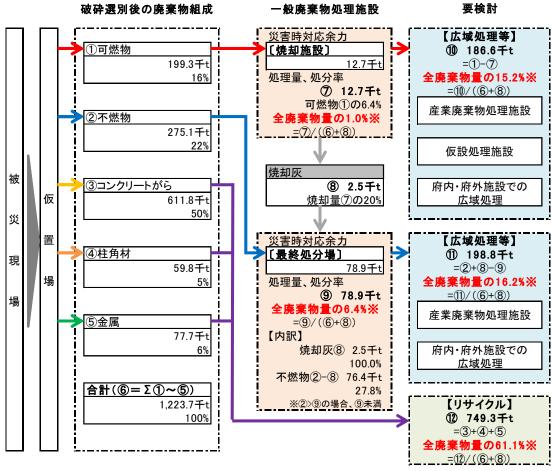


図 3.2.1 生駒断層帯地震の災害廃棄物処理フロー

注. 四捨五入の関係で合計が一致しない場合がある

表 3.2.1 破砕選別後の災害廃棄物の搬出先【生駒断層帯地震】

破砕選別後の 廃棄物組成	発生量 (千 t)	搬出先
可燃物	100.0	12.7 千 t を焼却施設で処理可能
中 然 初	199.3	186.6 千 t の処理・処分方法について、広域処理等を検討
不燃物		焼却灰 2.5 千 t と合わせ、198.8 千 t の処理・処分方法について、
*1 * Milk 100		広域処理等を検討
コンクリートがら	611.8	全量を再生資材として活用
柱角材	59.8	全量を木質チップとし、燃料もしくは原料として売却
金属	77.7	全量を金属くずとして売却

【風水害】

一般廃棄物処理施設を活用した場合、可燃物の132.3 千 t、不燃物の68.6 千 t の処理 について広域処理等の検討が必要である。

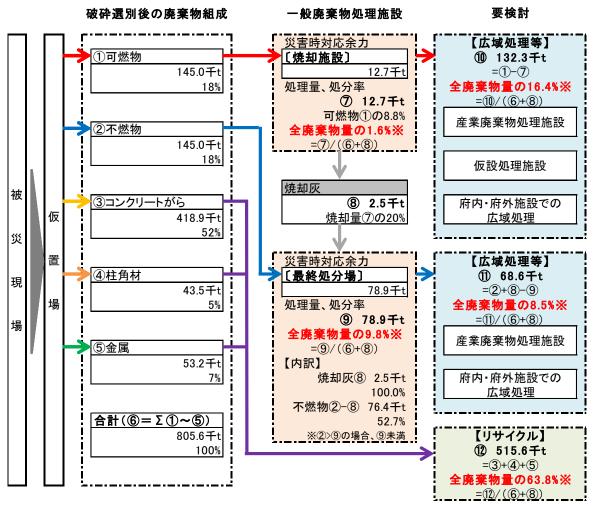


図 3.2.2 風水害の災害廃棄物処理フロー

注. 破砕選別後の廃棄物組成の合計は建物解体由来のみ

表 3.2.2 破砕選別後の災害廃棄物の搬出先【風水害】

破砕選別後の 廃棄物組成	発生量 (千 t)	搬出先
可燃物	145.0	12.7 千 t を焼却施設で処理可能
ראר אא ניי	145.0	132.3 千 t の処理・処分方法について、広域処理等を検討
不燃物	145.0	焼却灰 2.5 千 t と合わせ、68.6 千 t の処理・処分方法について、広域
-1 × × × 19J		処理等を検討
コンクリートがら	418.9	全量を再生資材として活用
柱角材	43.5	全量を木質チップとし、燃料もしくは原料として売却
金属	53.2	全量を金属くずとして売却

②平成35年度以降(新処理施設)の処理フロー

【生駒断層帯地震】

一般廃棄物処理施設を活用した場合、可燃物の 194.8 千 t、不燃物の 197.1 千 t の処理について広域処理等の検討が必要である。

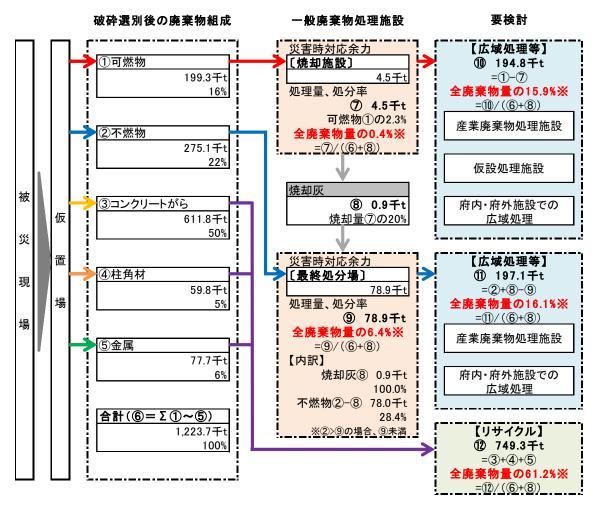


図 3.2.3 生駒断層帯地震の災害廃棄物処理フロー

表 3.2.3 破砕選別後の災害廃棄物の搬出先【生駒断層帯地震】

破砕選別後の 廃棄物組成	発生量 (千 t)	搬出先
可燃物		4.5 千 t を焼却施設で処理可能
		194.8 千 t の処理・処分方法について、広域処理等を検討
不燃物	275.1	焼却灰 0.9 千 t と合わせ、197.1 千 t の処理・処分方法について、 広域処理等を検討
コンクリートがら	611.8	全量を再生資材として活用
柱角材	59.8	全量を木質チップとし、燃料もしくは原料として売却
金属	77.7	全量を金属くずとして売却

【風水害】

一般廃棄物処理施設を活用した場合、可燃物の140.5 千 t、不燃物の67.0 千 t の処理 について広域処理等の検討が必要である。

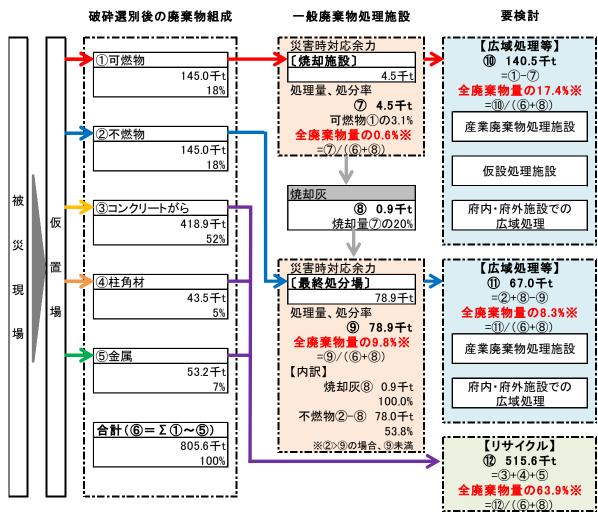


図 3.2.4 風水害の災害廃棄物処理フロー

注. 破砕選別後の廃棄物組成の合計は建物解体由来のみ

= 2 2 1	破砕選別後(アミ中原母を	か 払 山 チ	「国业宝」
表 3 7 4	做作事 用像(1) 淡 書 降 葉 刎	(/) 栅出光	【風水去】

破砕選別後の 廃棄物組成	発生量 (千 t)	搬出先
可燃物		4.5 千 t を焼却施設で処理可能 140.5 千 t の処理・処分方法について、広域処理等を検討
不燃物	145.0	焼却灰 0.9 千 t と合わせ、67.0 千 t の処理・処分方法について、広域 処理等を検討
コンクリートがら	418.9	全量を再生資材として活用
柱角材	43.5	全量を木質チップとし、燃料もしくは原料として売却
金属	53.2	全量を金属くずとして売却

3.3 塵芥車、し尿収集車の収集運搬台数の試算

3.3.1 塵芥車の収集運搬可能台数及び運搬可能量の把握

(1) 運搬可能量

塵芥車(ごみ収集車)の積載重量を勘案して災害廃棄物を分別収集するには、積載重量 別のごみ収集車のリストの作成と、積載重量を勘案した災害廃棄物の分別が必要である。

対象地域の車種別保有台数データ(直営)を入手・整理した。対象地域における運搬可能台数及び最大積載量は、25 台、46.9t であった。

総積載量(t) 車種 保有台数 積載量(t) ~1.0 2 0.4 小型 35.4 ~2.0 18 中型 ~4.0 3 10.8 軽トラック 1 0.4 その他 ーゲート 1.0 バキューム車 ~1.0 0.4 25 合計 46.9

表3.3.1 車種別保有台数(直営)

出典:市提供資料をもとに作成

(2) 各施設及び委託先の災害リスク

各施設(直営・委託・許可含む)の車両保管場所と、生駒断層帯地震時の震度分布図及び、液状化想定区域図、風水害時の洪水浸水域図をもとにハザード別保有台数を検討した。

対象地域の車両総台数 49 台 (塵芥用車両: 41 台、し尿収集車両: 8 台、その他: 1 台) のうち、震度 6 弱以上の地域で塵芥車は 38 台、し尿は 8 台であった。液状化危険度が中以上のエリアに含まれる車両台数は塵芥車が 11 台、し尿が 7 台であった。洪水浸水想定区域では、し尿収集車両 1 台が区域に含まれる。

3.3.2 関連車両の不足分の調達の検討

(1) 各施設及び委託・許可業者の車両保有台数及び保管場所

①塵芥用車両

対象地域の直営、委託業者の車両保有台数は、ダンプトラックが 20 台と最も多く、パッカー車 19 台、パワーゲート 1 台、軽トラック 1 台であり、計 41 台であった。 総重量は、パッカー車 38t、ダンプ 44t など計 83t であった。

②し尿処理

し尿処理の車両は、直営で1台、委託業者4事業者で7台の計8台、最大積載量は19tであった。直営車両は京田辺市環境衛生センター緑泉園に保管されている。

表 3.3.2 し尿処理施設の概要

項目	概要
施設名	京田辺市環境衛生センター緑泉園
所在地	京田辺市草内禅定寺4
処理方式	下水投入
処理能力	26KL/日
稼働日数	242日
汚泥処理設備	その他
運転管理体制	直営

出典:市提供資料をもとに作成

(2) 関連車両の不足分の調達の検討

①必要運搬回数の検討

災害廃棄物の運搬を地域内のダンプ等 22 台(45t)で行う場合、生駒断層帯地震時の 災害廃棄物発生量約 1,224 千 t では、運搬回数が 2 往復/日の場合でも 12,468 日の運搬 が必要である。風水害の場合は、災害廃棄物発生量約 810 千 t に対して、6,457 日(2 往復/日)の運搬が必要である。

し尿は、3日間の避難所避難者のし尿処理発生量 157,437L に対して、対象地域内のし 尿処理運搬車8台(19t)で行う場合、約9日で運搬が可能である。

以上から、災害廃棄物の運搬には、対象地域内のダンプ等の保有台数では運搬量が圧 倒的に不足することから、広域連携による運搬車の調達が必要である。

本検討は災害廃棄物発生量に対する運搬対象量、運搬回数の検討のみを行っている。 実際の災害廃棄物の運搬においては、被災現場から仮置場への搬出、仮置場から処理施設への搬出など、搬出経路により運搬回数は増加する。そのため、発災時には本検討結果より運搬回数が増大する可能性がある。

					生駒断層帯 地震	木津川
運搬対象量(t)				A=①+②	1,132,072	586,264
	災된	害廃	棄物発生	量(t)	1,223,720	810,196
		可炸	然物•不燃	物以外	749,251	520,183
		可炸	然物•不燃	紫物 ②=③+⑥	382,821	66,081
			可燃物	3=4-5	186,604	132,284
				災害廃棄物発生量(t) ④	199,327	145,006
				災害時対応余力(t/3年)(焼却施設) ⑤	12,722	12,722
			不燃物	6=7-8	196,217	66,081
				災害廃棄物発生量(t) ⑦	275,143	145,006
				災害時対応余力(t)(最終処分場) 8	78,926	78,926
ダンプ等				最大積載量(t)	4	5
				台数	2	2
運搬回数			•	1回/日 A÷⑨	24,936	12,913
				2回/日 A÷9÷2	12,468	6,457

表 3.3.3 運搬回数の試算

【災害廃棄物】

- 注. 運搬回数=災害廃棄物発生量÷最大積載量÷1日当たり運搬回数
- 注. 最大積載量(t)=総重量(t) で換算
- 注. ダンプ等・・・委託の軽ダンプ、ダンプ、コンテナ、ウイング、平ボディ

【し尿】

				し尿
避難所のし尿処理発生量	京田辺市			157,437
(L/3日)		t 換算	1	157
し尿収集車	最大積載量(t)		2	19
	台数			8
運搬回数	1回/日		①÷②	8.2

- 注. 運搬回数=避難所のし尿処理発生量÷最大積載量÷1 日当たり運搬回数
- 注. し尿最大積載量 1kg=1L で換算

②平時の収集体制を考慮した運搬対象量の検討

対象地域では、平時のごみ収集体制として全体平均で廃棄物 4 回(往復)/日で収集を行っている。

災害時においても、まずは通常の体制での収集運搬を実施する。

算出した1日当たりの必要運搬回数(③)から平時の平均収集運搬回数(④)を差し引いて、対象地域内の運搬車両以外で運搬が必要な運搬回数(残回数)(⑤)、運搬対象量⑥を整理した。

■算出手順

- ・表 3.3.3 で算出した運搬回数をもとに、3 年以内に処理を完了するとしたときの 1 年間の運搬回数 (②)、1 日当たりの運搬回数 (③) を算出
- ・1日当たりの運搬回数(③)から、平時の収集運搬回数(④)を差し引き、対象地域内の運搬車両以外で運搬が必要な運搬回数(残回数)(⑤)を算出
- ・算出した運搬回数(残回数)(⑤)に対象地域の最大積載量を掛け合わせ残りの運搬 対象量(t/日)(⑥)を算出

対象地域における運搬対象量から平時の収集体制で収集を行った場合、広域連携による運搬車両で必要な運搬対象量(t/日)(⑥)は生駒断層帯地震による発生量では863t/日、風水害による発生量では364t/日となった。

広域連携により運搬車両を調達する際は、3年以内に処理を完了するとした場合の1日に必要な残り運搬対象量を参考に、運搬可能な積載量の車両を調達する必要がある。

表 3.3.4 平時の平均収集運搬回数(回(往復)/日)

収集回数(廃棄物)	備考
4	AM2回、PM2回

表 3.3.5 広域連携による必要運搬回数、運搬対象量

	①必要運搬			④平時の	⑤残回数	⑥残り運搬
対象災害	回数	②3年で完了		平均収集	(回/日)	対象量
	(回)	(回/1年)	③(回/日)	運搬回数	⑤=③-④	(t/日)
生駒断層帯地震	24,936	8,312	23		19	863
木津川	12,913	4,305	12	4	8	364

4. 仮置場の面積の推計及び仮置場の理想的な配置に係る検討

災害廃棄物発生量の推計結果に基づき、仮置場の面積を推計するとともに、自治体の通常時の廃棄物の分別ルールで運用することを念頭に置き、仮置場における理想的な分別種類と配置を明らかにする。

4.1 仮置場に必要な面積の推計

4.1.1 推計方法

本検討では、次の4ケースに分けて仮置場必要面積の算出を行った。

それぞれの算出方法は、(1) 以降に示した。

- ①災害廃棄物対策指針の推計方法(処理期間 2.5年、積上げ高 5m、解体期間未設定)
- ②被災建物の解体期間を考慮し、解体・処理期間を考慮した推計方法
- ③②の仮置場高さ2m、底面積5,000 ㎡として推計する方法
- ④「片付けごみ」(仮置場高さ 2m、底面積 200 ㎡)と「建物解体」(仮置場高さ 5m、 底面積 5,000 ㎡)を時期別に考慮した仮置場の必要面積の推計方法

	解体・処理期間を考慮	積上高(m)	底面積(m2)	仮置場の種類
ケース1	処理期間2.5年	5		
ケース2		5	5,000	災害廃棄物全量
, , , , ,	解体期間1~2年、一次仮置	2	5,000	
ケース4	場での処理期間1.5~2.5年	2	200	片付けごみ
7-24		5	5,000	建物解体ごみ

表 4.1.1 仮置場面積推計のケース

災害廃棄物処理の流れと、本検討における仮置場面積推計ケースの関係性のイメージを 次の図に示した。

ケース1は、災害廃棄物の全量を1箇所に集積した場合に必要な仮置場面積であり、仮 置場必要面積の最大面積が把握可能である。

ケース 2 は、災害廃棄物が建物解体由来のみと想定した場合に、被災現場から一次仮置場、一次仮置場から二次仮置場に順次搬入する実態を考慮したものであり、一次仮置場面積と、二次仮置場面積を個別に算出する。

ケース3は、ケース2と同様であるが、仮置場の積み上げに使用する重機が調達できない場合を想定し、積上げ高さを2mに設定して算出する。

ケース4は、災害廃棄物発生量を災害直後から発生する片付けごみ由来の発生量と約3 箇月後から発生する建物解体由来を区分してそれぞれ仮置場必要面積を算出する。

自治体が仮置場候補地の面積の過不足を検討する場合は、一次仮置場は仮置場候補地の 総面積との比較、二次仮置場は最大の面積をもつ候補地と比較することになる。

注. ケース 4 は、仮置場を発災直後に必要な片付けごみ、約 3 箇月後から急増する解体ごみを分けて仮置場必要面積を考えた場合の推計を行った

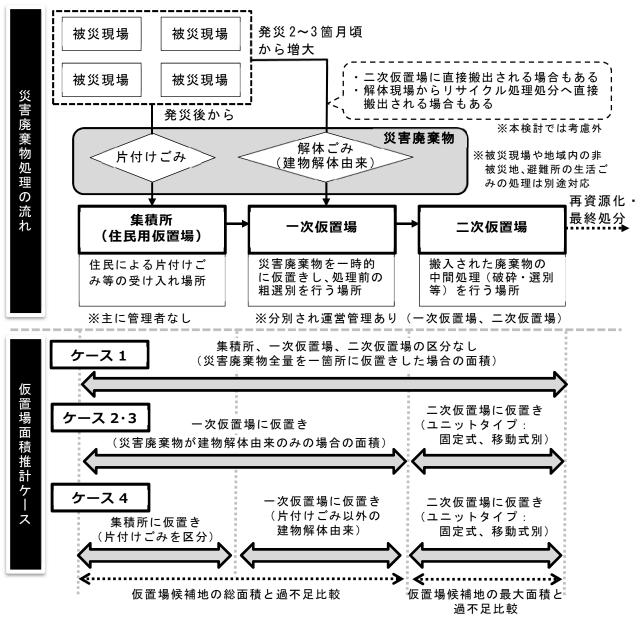


図 4.1.1 仮置場面積の検討ケースのイメージ

(1) 災害廃棄物対策指針の処理期間(2.5年)による推計方法(ケース1)

仮置場に必要な面積の推計方法は、「災害廃棄物対策指針 技術資料【技 1-14-4】」において、処理期間を 2.5 年とした以下の算定式が示されている。

【指針】

- ◆仮置場必要面積=①集積量÷②見かけ比重÷③積み上げ高さ×(1+④作業スペース割合)
 - ①集積量=災害廃棄物等発生量-年間処理量

年間処理量=災害廃棄物等発生量÷処理期間(2.5年)

- ②見かけ比重:可燃物 0.4 (t/m³)、不燃物 1.1 (t/m³)、津波堆積物 1.46 (t/m³)
- ③積み上げ高さ=5m
 - 注.5mの根拠は、「仮置場の可燃性廃棄物の火災予防(国立環境研究所)」の観点から設定されたものである。
- ④作業スペース割合=1.0

(2) 解体・処理期間を考慮した推計方法 (ケース2~4)

①解体・処理期間を考慮した推計 (ケース2:積上高5m、底面積5,000 m)

仮置場の面積は、被災建物の解体期間、処理期間の条件設定により、A~Cの3パターンについて災害の種類ごとに推計した。各パターンにおける工程表と災害廃棄物の解体・処理のイメージを表4.1.2 へそれぞれ示す。

なお、災害廃棄物対策指針が示す推計方法は、前述の算出式に従って、処理期間を 2 年とした場合は、一次仮置場の仮置量は全体量の 1/2、処理期間を 3 年とした場合は一次仮置場の仮置量は全体量の 2/3 となる。

			パターン		/ #.*
		А	В	С	備考
被災現場	解体期間(年)	1.0	1.5	2.0	初期準備期間を含む
一次信罢坦	処理期間(年)	1.5	2.0	2.5	初期準備期間を含む
一次仮置場 	最大仮置量	38%	27%	21%	
一次信罢坦	処理期間(年)	2.5	2.5	2.5	撤去等の期間を含む
二次仮置場	最大仮置量	59%	38%	17%	

表 4.1.2 仮置場面積推計のパターン (建物解体由来)

注. パターンAは災害廃棄物発生量が比較的少ない中小規模災害で解体期間・処理期間が短いケース、パターンCは災害廃棄物発生量が比較的多い大規模災害で解体期間・処理期間が長いケース、パターンBはパターンAとパターンCの中間のケースとした

	年						14	年											2:	年											3:	年					
	ヶ月	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
被災現場	解体期間																																				
一次仮置場	処理期間																																				
一次似直场	仮置期間																																				
二次仮置場	処理期間																																				
一次1以直场	仮置期間																																				

表 4.1.3 パターン A の工程

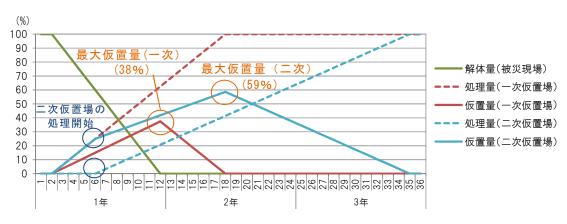


図 4.1.2 パターン A の解体・処理イメージ

表 4.1.4 パターンBの工程

	年						14	年											2:	年											3	年					
	ヶ月	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
被災現場	解体期間																																				
一次仮置場	処理期間																																				
一次似旦场	仮置期間																																				
二次仮置場	処理期間																																				
一次似旦场	仮置期間																																				

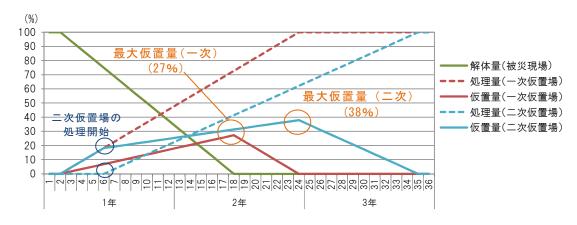


図 4.1.3 パターン B の解体・処理イメージ

表 4.1.5 パターン C の工程

	年						14	年											2:	年											3:	年					
	ヶ月	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
被災現場	解体期間																																				
一次仮置場	処理期間																																				
一次似直场	仮置期間																																				
一为仁罢坦	処理期間																																				
二次仮置場	仮置期間																																				



図 4.1.4 パターン C の解体・処理イメージ

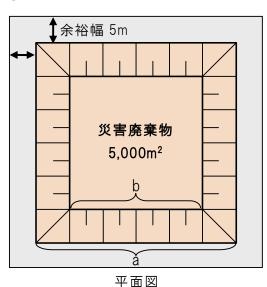
仮置場の必要面積は、災害廃棄物を図 4.1.5 に示す模式図のように配置した場合について算出した。

1箇所当たりの底面積は、東日本大震災の事例より $5,000\text{m}^2$ となるよう災害廃棄物を仮置きすること設定し、容量が少ない場合は図 4.1.5 の表に示す $200\sim4,000\text{m}^2$ で仮置きするものとした。

②解体・処理期間を考慮した推計 (ケース3:積上高2m、底面積5,000 m)

仮置場高さ2.0mの場合についても試算を行った。

<仮置場必要面積の算定式>


仮置場必要面積= (a+①余裕幅)²

①余裕幅 : 5m ②仮置量= (a²+b²) ×1/2×高さ

③仮置場高さ: 5m (2m) ※本検討においては高さ 2m についても算出

4法面勾配 : 1:1.0

⑤災害廃棄物等の見かけ比重: 1.0t/m³ (混合状態の災害廃棄物の概ねの見かけ比重)

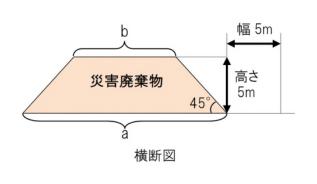


表 仮置場面積と容量(高さ5mで計算)

底面積(m²)	必要面積(m²)	仮置量(m³)
5, 000	6, 514	21, 714
4, 000	5, 365	17, 088
3, 000	4, 195	12, 511
2, 000	2, 994	8, 014
1, 000	1, 732	3, 669
500	1, 047	1, 632
200	583	543

図 4.1.5 一次仮置場面積の模式図

二次仮置場面積については、仮設の混合物処理施設を設置して3年間で処理することを想定し、災害廃棄物の1日当たりの処理量の平均を表4.1.6に基づいて設定することで、必要なユニット面積を算出した。

二次仮置場レイアウトのイメージは下図のとおりである。

表 4.1.6 混合物処理施設のユニット面積と処理量

	タイプ	ha/unit	処理:	量(t _.	/日)	処理量平均(t/日)
Ī	固定式	4. 0	300	~	1, 200	750
Ī	移動式	4. 5	140	~	570	355

出典:「第6回 大規模災害発生時における災害廃棄物対策検討会資料」をもとに作成

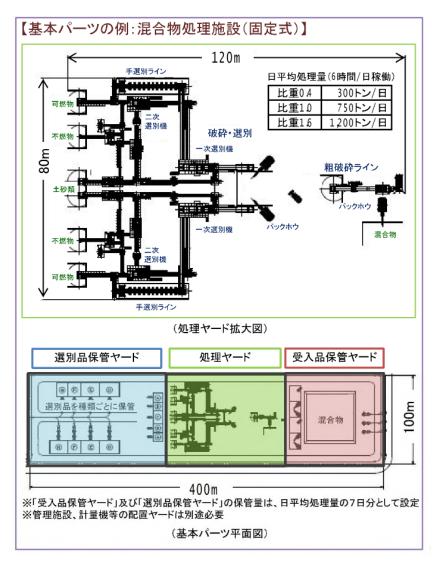


図 4.1.6 二次仮置場レイアウト図

注. 基本パーツ…二次仮置場に要求される処理能力を持つ施設を配置したもの、ユニット…二次仮置場に要求される能力である「受入品保管ヤード」、「処理ヤード」、「選別品保管ヤード」等のパーツを組み合わせたもの

出典:「第5回 大規模災害発生時における災害廃棄物対策検討会資料」をもとに作成

③解体・処理期間を考慮した推計(ケース4:(片付けごみ:積上高2m、底面積200 m), (建物解体ごみ:積上高5m、底面積5,000 m))

ケース $1\sim3$ では災害廃棄物全体を対象としているが、片付けごみは発災直後から、建物解体ごみは約3箇月後から増加するため、当初から過大な一次仮置場面積が必要となるわけではない。

発災直後に広大な仮置場を用意できない場合は、少なくとも片付けごみの仮置場を設定し、解体が始まる3箇月後をめどに建物解体ごみの受入が可能な仮置場を選定する必要がある。

発災直後に用意すべき仮置場面積は、平成30年6月大阪府北部を震源とする地震による茨木市被害実績(焼却(溶融)施設への搬入実績)をもとに、片付けごみの処理期間(月)、最大仮置量、搬入ピーク(月)から推計した。

茨木市被害実績によれば、概ね発災から 2.5 箇月で搬入量が発災前の搬入量へ収束傾向にあった。また、発災から 1 箇月間は搬入量に概ね変化が無く、1 箇月目以降より減少傾向にあったことから、地震時の搬入ピークを 1 箇月、その時の 1 箇月間の搬入量から最大仮置量を片付けごみ発生量の 68%として設定した。風水害においては、浸水による泥出しや床下乾燥、汚水による汚れもの等のため、発災直後に多量に排出される傾向があることから、発災から 1~2 週間を搬入ピークとして設定した。

片付けごみは、建物解体由来の災害廃棄物と異なり比較的サイズが小さいため、最大仮置場高さを 2.0 m、仮置場底面積を 200 m²に設定した。なお、建物解体由来による災害廃棄物については、最大仮置場高さを 5.0 m としている。

片付けごみは災害廃棄物発生量の内数となるため、ケース2、3より片付けごみ発生量を除外し、最大仮置量について再計算を行う。建物解体由来の災害廃棄物の最大仮置量(例:パターン1の場合、一次仮置場で38%)から片付けごみ発生量の最大仮置量を差し引くこととする。

片付けごみの解体・処理期間による検討については事例をもとにした試算のため、図4.1.7、図4.1.8 に、搬入時期のイメージを示した。

		地震	風水害	
	処理期間(月)	2.5		
	最大仮置量(%)	68%		
	搬入ピーク(月)	1.0	0.3	
┃ ┃ 住民仮置場・一次仮置場	仮置場高さ(m)	2.0		
住民似直场 - 人似直场	周辺の余裕幅(m)	2.	.5	
	仮置場底面積(m²)	20	0.0	
	必要面積(m²)	583.0		
	仮置量(m³)	543.0		

表 4.1.7 仮置場面積推計条件(片付けごみ)

出典: 処理期間、最大仮置量、地震時の搬入ピーク(月)は、平成30年6月大阪府北部を震源とする地震による茨木市実績(茨木市提供データ)をもとに設定

表 4.1.8 仮置場面積推計のパターン(建物解体由来)(再掲)

			パターン	備考	
		А	В	С	佣方
被災現場	解体期間(年)	1.0	1.5	2.0	初期準備期間を含む
一次信罢坦	処理期間(年)	1.5	2.0	2.5	初期準備期間を含む
一次仮置場	最大仮置量	38%	27%	21%	
一次信罢坦	処理期間(年)	2.5	2.5	2.5	撤去等の期間を含む
二次仮置場	最大仮置量	59%	38%	17%	

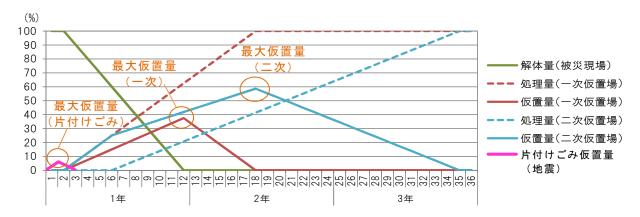


図 4.1.7 片付けごみを考慮したパターン A の解体・処理イメージ(地震)

注. 初期に排出される片付けごみを先に処理することにより建物解体由来の廃棄物の最大仮置量(一次・ 二次)は低減する

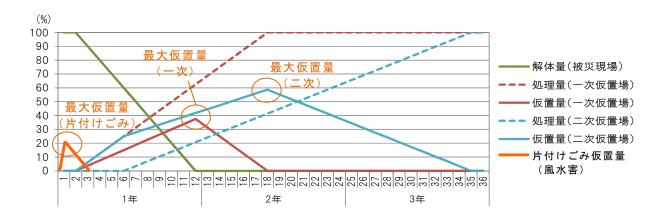


図 4.1.8 片付けごみを考慮したパターン A の解体・処理イメージ(風水害)

注. 初期に排出される片付けごみを先に処理することにより建物解体由来の廃棄物の最大仮置量(一次・ 二次) は低減する

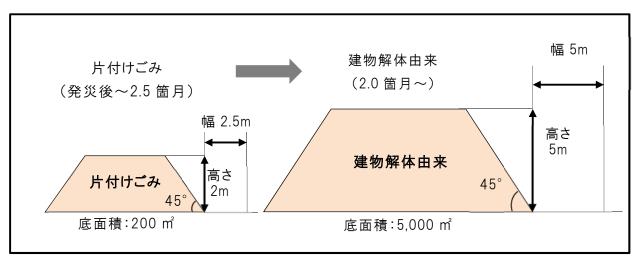


図 4.1.9 片付けごみを考慮した仮置場検討イメージ

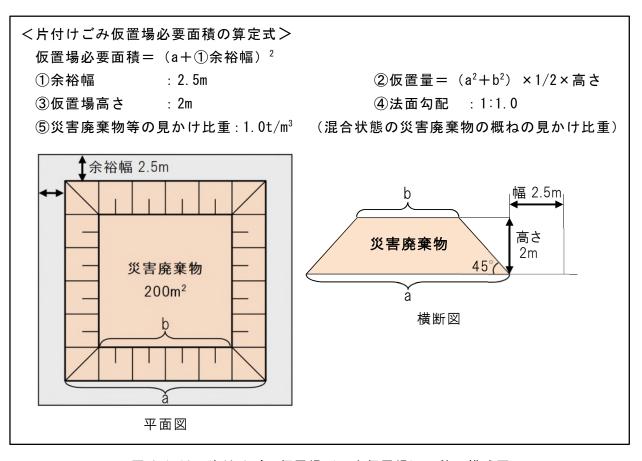


図 4.1.10 片付けごみ仮置場(一次仮置場)面積の模式図

4.1.2 推計結果

(1) 災害廃棄物対策指針の処理期間(2.5年)による推計結果(ケース1)

環境省が示す推計方法による仮置場必要面積の推計結果を下表に示す。

算出した仮置場必要面積は、災害廃棄物発生量全量に対する仮置場必要面積である。

風水害では、災害廃棄物対策指針による算出方法において、片付けごみにあたる床上浸水、床下浸水の見かけ比重(t/m³)が定められていないことから、災害廃棄物対策指針に基づき全壊、半壊による災害廃棄物発生量(建物解体由来)に対する仮置場必要面積を算出する。実際の災害時は、風水害では発災直後に片付けごみの排出があり仮置場を確保する必要があることから、推計結果で想定される仮置場必要面積程度の仮置場を確保しておくことが考えられる。

地震災害は、生駒断層帯地震による災害廃棄物発生量 1,223.7 千 t (表 4.1.9) をもと に仮置場必要面積を推計した結果、必要面積は 36.6ha となった。

また、風水害による災害廃棄物発生量 805.6 千 t (表 4.1.11) をもとに仮置場必要面積を推計した結果、必要面積は 24.8ha となった。

表 4.1.9 種類別の災害廃棄物発生量(南海トラフ巨大地震)(再掲)

		建物解体由来(千t)					
災害種別	可燃物	不燃物	コンクリート がら	金属	柱角材	合計	
生駒断層帯地震	199.3	275.1	611.8	77.7	59.8	1,223.7	

表 4.1.10 仮置場必要面積(生駒断層帯地震)

		仮置場必要面積(ha)						
災害種別	可燃物	不燃物	コンクリート がら	金属	柱角材	合計		
生駒断層帯地震	12.0	6.0	13.3	1.7	3.6	36.6		

表 4.1.11 種類別の災害廃棄物発生量【風水害】(建物解体由来のみ)(再掲)

	建物解体由来(千t)							
災害種別	可燃物 (18%)	不燃物 (18%)	コンクリート がら (52%)	金属 (6.6%)	柱角材 (5.4%)	合計		
木津川	145.0	145.0	418.9	53.2	43.5	805.6		

表 4.1.12 仮置場必要面積(風水害)

ſ		仮置場必要面積(ha)							
) 災害種別		建物解体由来						
災害種別 	可燃物	不燃物	コンクリートがら	金属	柱角材	合計			
ſ	木津川	8.7	3.2	9.1	1.2	2.6	24.8		

注. ケース 1 は種類別災害廃棄物発生量に見かけ比重を乗じるなどして算出するため建物解体由来の発生量をもとに算出

(2) 解体・処理期間を考慮した推計結果 (ケース2:高さ5m、底面積5,000 m)

①仮置場必要面積

解体・処理期間を考慮した推計方法による仮置場必要面積の推計結果を下表に示す。

表 4.1.13 パターン別仮置場必要面積(生駒断層帯地震)

※字話別	.04	災害廃棄物発	目上 仁異見(1)	仮置場必要面積		
災害種別	パターン	生量(t)	最大仮置量(t)	(m ²)	(ha)	
生駒断層帯地震	Α		458,895	138,500	13.9	
	В	1,223,720	333,742	101,900	10.2	
	С		262,226	79,900	8.0	

表 4.1.14 パターン別仮置場必要面積(風水害)

※宝锸団	.04	災害廃棄物発	見上 仁異見(1)	仮置場必要面積		
災 <u></u>	災害種別 パターン 学 生		最大仮置量(t)	(m ²)	(ha)	
	Α	810,196	303,823	91,200	9.1	
木津川	В		220,962	68,100	6.8	
	С		173,613	52,100	5.2	

②二次仮置場必要面積

生駒断層帯地震の災害廃棄物発生量約 1,224 千 t、風水害による災害廃棄物発生量約 810 千 t をもとに、必要な二次仮置場の面積をパターン A~C について推計した。

なお、保管面積は二次仮置場における最大仮置量から算出したものであり、二次仮置場レイアウトの基本パーツからは受入品保管ヤード面積を差し引いた。

表 4.1.15 パターン別二次仮置場面積(生駒断層帯地震)

.8 h	災害廃棄物	最大	保管	面積	ユニット	面積(ha)	仮置場必要	更面積(ha)
パターン	発生量(t)	仮置量(t)	(m ²)	(ha)	固定式	移動式	固定式ユニット	移動式ユニット
Α	1,223,720	717,353	138,500	13.9	9.0	17.5	22.9	31.4
В		464,170	101,900	10.2	9.0	17.5	19.2	27.7
С		210,986	79,900	8.0	9.0	17.5	17.0	25.5

表 4.1.16 パターン別二次仮置場面積(風水害)

.04		災害廃棄物	最大	保管	面積	ユニット	面積(ha)	仮置場必要	要面積(ha)
パターン	発生量(t)	仮置量(t)	(m ²)	(ha)	固定式	移動式	固定式ユニット	移動式ユニット	
Α		810,196	474,942	91,200	9.1	6.0	14.0	15.1	23.1
В			307,316	68,100	6.8	6.0	14.0	12.8	20.8
С			139,689	52,100	5.2	6.0	14.0	11.2	19.2

③推計結果まとめ

環境省が示す方法と解体・処理期間を考慮した推計方法より算出した仮置場必要面積 の推計結果をまとめた。

今後、これらの面積を参考として、仮置場候補地を確保するため、関係部局と調整を 図っていく必要がある。

表 4.1.17 仮置場必要面積(単位:ha)

災害種別	仮置場の種類	環境省が示す方法	Α	В	С
生駒断層帯地震	一次仮置場	36.6	13.9	10.2	8.0
	二次仮置場(固定式)	_	22.9	19.2	17.0
	二次仮置場(移動式)	_	31.4	27.7	25.5
	一次仮置場	24.8	9.1	6.8	5.2
木津川	二次仮置場(固定式)		15.1	12.8	11.2
	二次仮置場(移動式)		23.1	20.8	19.2

(3) 解体・処理期間を考慮した試算結果 (ケース3:積上高2m、底面積5,000 ㎡)

仮置場での積み上げは、必要な重機が十分に確保できない場合を考慮し、仮置場高さを 2mに設定し、試算を行った。

試算結果を表 4.1.18 に示す。

表 4.1.18 仮置場必要面積(積上げ高さ 2m の場合)(単位:ha)

災害種別	仮置場の種類	環境省が示す方法	Α	В	С
生駒断層帯地震	一次仮置場	91.5	31.7	23.1	18.1
	二次仮置場(固定式)		40.7	32.1	27.1
	二次仮置場(移動式)	_	49.2	40.6	35.6
	一次仮置場	62.6	21.0	15.3	12.0
木津川	二次仮置場(固定式)	_	27.0	21.3	18.0
	二次仮置場(移動式)	_	35.0	29.3	26.0

(4) 解体・処理期間を考慮した試算結果 (ケース 4:(片付けごみ:積上高 2m、底面積 200 m),(建物解体ごみ:積上高 5m、底面積 5,000 m))

ケース2、3に加えて、片付けごみ量を考慮した推計を行った。

片付けごみの処理量を考慮する場合の、一次仮置場、二次仮置場へ搬入される災害廃棄物発生量は片付けごみ量を差し引いた量となる。

そのため、表 4.1.19 のとおり全体の災害廃棄物発生量に対する片付けごみ発生量の最大仮置量の割合 (全発生量に対する片付けごみの割合)を算出した。表 4.1.20 の全体の災害廃棄物発生量の最大仮置量から表 4.1.19 の災害廃棄物発生量全量に対する片付けごみ割合を差し引くことで、表 4.1.21 の最大仮置量のとおり建物解体由来の廃棄物の最大仮置量を設定した。

算出結果を表 4.1.22 に示す。生駒断層帯地震の片付けごみ仮置場必要面積は 4.9ha、風水害による片付けごみ仮置場必要面積は 0.6ha であった。今回の検討において風水害による片付けごみは、半壊、床上浸水、床下浸水を対象としているが、全壊家屋からの片付けごみの排出も考えらえられるため、実際においては片付けごみ仮置場必要面積は増加する可能性がある。

表 4.1.19 片付けごみ最大仮置量の検討

災害種別	①災害廃棄物 発生量(t)	②片付けごみ量 (t)	③片付けごみ 最大仮置量 (68%分)(t)	④災害廃棄物 発生量(建物解 体由来)(t)	全発生量①に対す る片付けごみ最大 仮置量割合
			2×68%	1)-2	2/1
生駒断層帯地震	1,223,720	58,679	39,901	1,165,041	4.8%
木津川	810,196	7,330	4,984	802,866	0.9%

表 4.1.20 仮置場面積推計のパターン(建物解体由来)(再掲)

公 · · · · · · · · · · · · · · · · · · ·						
		パターン			備考	
		А	В	С	1)用行	
被災現場	解体期間(年)	1.0	1.5	2.0	初期準備期間を含む	
一为后罢担	処理期間(年)	1.5	2.0	2.5	初期準備期間を含む	
一次仮置場	最大仮置量	38%	27%	21%		
一为后罢担	処理期間(年)	2.5	2.5	2.5	撤去等の期間を含む	
二次仮置場	最大仮置量	59%	38%	17%		

表 4.1.21 仮置場面積推計のパターン

		地震			風水害		
		Α	В	С	Α	В	С
被災現場	解体期間(年)	1.0	1.5	2.0	1.0	1.5	2.0
一次	処理期間(年)	1.5	2.0	2.5	1.5	2.0	2.5
_ <u></u>	最大仮置量	34%	24%	18%	37%	27%	21%
二次	処理期間(年)	2.5	2.5	2.5	2.5	2.5	2.5
一次	最大仮置量	55%	35%	14%	58%	37%	17%

表 4.1.22 仮置場必要面積(単位:ha)

災害種別	仮置場の種類	環境省が示す方法	Α	В	С
	一次仮置場(片付けごみ)	_	4.9		
生駒断層帯地震 生駒断層帯地震	一次仮置場(建物解体由来)	36.6	12.1	8.5	6.4
工制的旧市市地及	二次仮置場(固定式)		21.1	17.5	15.4
	二次仮置場(移動式)	_	29.6	26.0	23.9
	一次仮置場(片付けごみ)	_		0.6	
木津川	一次仮置場(建物解体由来)	24.8	9.0	6.5	5.1
	二次仮置場(固定式)	_	15.0	12.5	11.1
	二次仮置場(移動式)	1	23.0	20.5	19.1

(5) 推計結果整理

4.1.2(1)~(4)で示した仮置場必要面積の算出結果を表 4.1.23に整理した。

仮置場必要面積は、例えば地震災害のケース1では36.6ha 必要であるが、被災建物の解体期間を考慮したケース2~4では必要面積が少ない結果となった。

積み上げ高さ5mのケース2では、処理期間が短いパターンAの場合に一次仮置場が13.9ha、二次仮置場は固定式で22.9haが必要となった。

積み上げ高さ 2mのケース 3 では、ケース 2 よりも広い面積が必要となり、パターン Aの一次仮置場が 31.7ha、二次仮置場は 40.7ha(固定式)となった。

片付けごみの処理を考慮したケース4では、片付けごみの仮置きに必要な面積は4.9ha、建物解体由来の処理に必要な一次仮置場の必要面積は12.1ha(パターンA)、二次仮置場の必要面積は21.1ha(パターンA・固定式)となった。

発災直後は、それぞれの地域において設置可能(事前に想定)な仮置場の面積や調達可能な資機材数、調整状況等に合わせ、片付けごみの仮置場を用意し、必要に応じ解体が始まる3箇月後をめどに、より大きな面積の仮置場候補地を選定、あるいは拡張して処理を行う。

災害時(特に家屋解体ごみ)は被災現場から一次仮置場への搬入のみではなく、直接二次仮置場や処理・資源化施設へ運び込む場合も考えられるため、災害時に設置が必要な仮置場面積はこの推計結果より下回る可能性がある。

※字の廷籽	毎山 ぷん ゝ		条件	.8A	一次任	反置場	二次低	置場
災害の種類	算出パターン	ケース		パターン	片付けごみ	建物解体由来	固定式	移動式
生駒断層帯	環境省が示す方法	1	-	-		36.6		
也震				Α	1;	3.9	22.9	31.4
		2	高さ5m	В	10	0.2	19.2	27.7
				С	8	.0	17.0	25.5
	搬入速度・処理速度			Α	3	1.7	40.7	49.2
	版人体及・処理体及による方法	3	高さ2m	В	23	3.1	32.1	40.6
				С	18	8.1	27.1	35.6
		4	片付けごみ 考慮	Α	4.9	12.1	21.1	29.6
				В		8.5	17.5	26.0
				С		6.4	15.4	23.9
「津川	環境省が示す方法	1	_		24.8			
				Α	9	.1	15.1	23.1
	2	2	高さ5m	В	6.8		12.8	20.8
				С	5.2		11.2	19.2
	搬入速度・処理速度			Α	2	1.0	27.0	35.0
	による方法	3	高さ2m	В	15	5.3	21.3	29.3
	による万法			С	1:	2.0	18.0	26.0
		Δ	片付けごみ	Α		9.0	15.0	23.0
			考慮	В	0.6	6.5	12.5	20.5
				С		5.1	11.1	19.1

表 4.1.23 仮置場必要面積 計算結果まとめ(単位:ha)

注. ケース1: 災害廃棄物対策指針の処理期間 (2.5年) による推計方法、ケース2: 解体・処理期間を 考慮し、積上高5m、底面積5,000㎡とした推計方法、ケース3: ケース2を積上高2mとした推計方 法、ケース4: ケース2をもとに片付けごみの処理を考慮した推計方法

注. パターンA:解体期間 1.0年、処理期間 1.5年、パターンB:解体期間 1.5年、処理期間 2.0年、パターンC:解体期間 2.0年、処理期間 2.5年

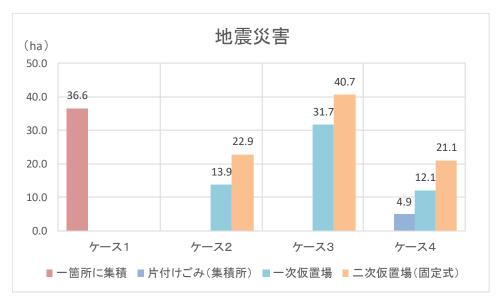


図 4.1.11 仮置場必要面積比較(地震)

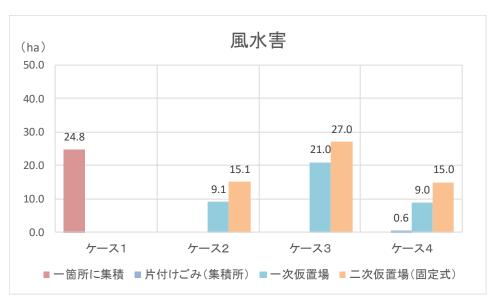


図 4.1.12 仮置場必要面積比較(風水害)

注. ケース 1: 災害廃棄物対策指針の処理期間 (2.5年) による推計方法、ケース 2: 解体・処理期間を考慮し、積上高 5m、底面積 5,000 ㎡ とした推計方法、ケース 3: ケース 2を積上高 2m とした推計方法、ケース 4: ケース 2をもとに片付けごみの処理を考慮した推計方法

注. パターンA:解体期間 1.0年、二次仮置場(固定)で比較

注. ケース 1 は種類別災害廃棄物発生量に見かけ比重を乗じるなどして算出するため建物解体由来の発生量をもとに算出。ケース 2~4 は災害廃棄物発生量の全量をもとに算出

注. ケース4の「一次仮置場」は「一次仮置場 (建物解体由来)」

4.1.3 仮置場候補用地の情報整理

対象地域で想定される現状における仮置場の総面積と必要面積の比較を行った。

まずは地震、風水害とも片付けごみに必要な一次仮置場に必要な仮置場候補用地を確保 し、片付けごみの処理を行う発災後約2箇月の間に建物解体由来の災害廃棄物用の候補用 地面積の不足分について調整を行うことが考えられる。

なお、公共用地は避難場所や災害支援活動拠点などへの提供も考えられるため、今後関係部局との調整が必要となる可能性がある。また、建物等により使用可能な面積が限られている場合もあるため、今後、敷地面積と使用可能な面積についても把握する必要がある。

4.2 仮置場の理想的な配置に係る検討

4.2.1 災害時における家庭系ごみの搬出ルール

(1) 平時の一般廃棄物排出ルール

対象地域における、家庭系ごみの分別区分と排出方法を示す。

仮置場の配置においては、対象地域における平時の一般ごみ排出ルールを考慮することで、住民による分別・搬入を円滑にすることが可能になる。

表 4.2.1 家庭系ごみの分別区分

分別区分	対象となるものの一例	収集頻度
燃やすごみ	生ごみ、紙くず、靴、皮革製品、草花、CD、DVD など	週2回
プラスチック 容器包装	シャンプーや洗剤のボトル、トレイ、カップ、パック、 プラスチック製の包装、発泡スチロール、 ペットボトルのキャップなど	週1回
紙ごみ	新聞、チラシ、雑誌、書籍、段ボール	月1回
破砕ごみ	金属製品、プラスチック製品、小型の家電、鏡、かさ、 掃除用品など	月1回
直接埋立ごみ	グラス、陶器、植木鉢、ガラスなど	2か月に1回
危険ごみ	刃物類、蛍光灯、ライター、スピーカー類、鉄アレイ、 チェーンなど	2か月に1回
空きカン	飲料用食品用の缶	月1回
空きビン	飲料用、食品用の瓶、化粧ビン	月1回
ペットボトル	飲料のペットボトル	月1回
乾電池	充電式・ボタン電池以外の電池	2か月に1回
スプレー缶	カセットコンロ用ボンベ、殺虫剤、化粧品、 芳香スプレー缶	2 か月に1回
粗大ごみ	自転車、ストーブ、ガスコンロ、ソファー、たんす、 テレビ台、棚	申込制随時
小型家電	携帯電話、デジカメ、ゲーム機、電子辞書、 音楽プレーヤー、USBメモリなどの電子機器	回 収 ボックスに持参
収集・処理 できないごみ	テレビなど家電リサイクル法対象品、パソコン、仏具・ 神具、建築資材など	_

出典:「平成 28 年度 京田辺市ごみの分別・出し方ガイドブック」(平成 28 年 7 月、京田辺市)をもと に作成

(2) 災害時における家庭系ごみの搬出

対象地域における家庭系ごみの分別区分のうち、片付けごみとして排出が想定されるものを表 4.2.2 に示す。

通常の燃えるごみは、通常ルール(災害時に収集頻度等が変更される可能性あり)のと おり排出し、片付けごみと一緒にしない。

災害時においては、資源ごみは極力家で保管し、収集開始時期は別途広報するなどの対応が必要となる。有害ごみについても、割れたもの以外は極力家で保管する方が望ましい。 片付けごみとして、外構部の塀、コンクリートブロック、屋根材(瓦、スレート、波板等) 等が多量に排出される。

分別区分	対象となるものの一例
プラスチック容器包装	プラスチック製の包装など
破砕ごみ	金属製品、プラスチック製品、電化製品(家電4品目・小型家電)等
直接埋立ごみ	グラス、陶器、植木鉢、ガラス等
空きカン	割れたカン等
空きビン	割れたビン等
粗大ごみ	家具類(たんす、棚等)・布団・たたみ等

表 4.2.2 通常の家庭系ごみの分類から片付けごみとして排出が想定されるもの

4.2.2 仮置場の設置に係る検討

(1) 仮置場レイアウトの留意点

仮置場レイアウトは、災害の規模や種類、自治体の方針などを考慮して検討する必要がある。自治体においては予め状況に応じた仮置場レイアウトを複数検討することが求められる。(2) に仮置場レイアウト(例)を示す。

項目		留意点
《字页相 #	大規模	・集積所(住民用仮置場)に粗選別作業スペースも合わせて一次仮置場として分別区分。粗選別後、二次仮置場に運搬を想定。
災害の規模 	中小規模	・集積所(住民用仮置場)を設定し、粗選別を行う一次仮置場に運搬。 あるいは処理施設に直接搬入も考えられる。
	地震災害	・地震災害時には瓦類などのスペースを広くする。
災害の種類	風水害	・風水害時には畳(ふとん、マットレス)などのスペースを広くとる。 ・強風による屋根材(瓦、スレート、波板等)などのスペースを広く とる。
ステーション回収の実施可否	実施可	・道路などインフラが使用可能でステーション回収可能な場合や自治体でステーション回収を想定している場合。 ・平時の搬出区分、方法で搬出・収集(例:可燃ごみは 45L のごみ袋に入れて搬出)。
	実施不可	・集積所(住民用仮置場)、一次仮置場を設置して対応。

表 4.2.3 仮置場レイアウト配置の留意点

注.素材が似ているコンクリートがらとスレートは必ず分別し、コンクリートがらは極力リサイクル、 スレートは適切に処理・処分を行う

注. スレート (アスベストを含有するものがあるため)、ガラス・陶器 (仮置場で散乱し、仮置場返却時の原状回復を考慮) はコンテナ、フレコンバッグ等に収容し、飛散・散乱防止を図る

(2) 仮置場レイアウト (例)

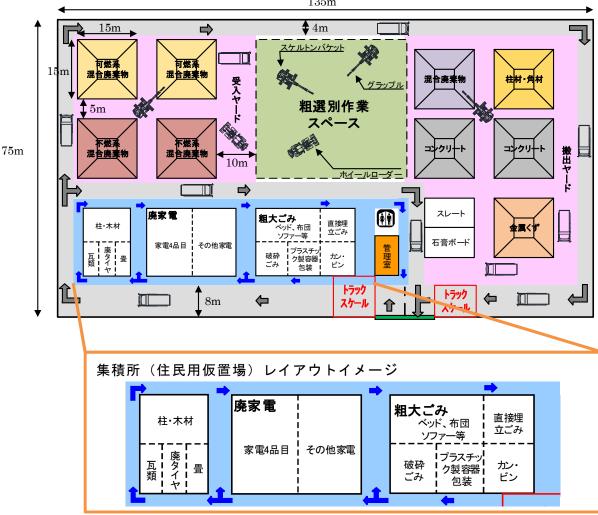
対象地域のごみ分別区分をもとに検討した仮置場レイアウト(例)を示す。

レイアウト(例)は、特定の場所を示さず一般的なレイアウト(例)を作成した。レイアウト(例)の面積は、東日本大震災の事例から面積が1ha前後の仮置場が設置されていることから約1haを想定した。

レイアウト(例)における品目・配置は、次の方針に基づき作成した。

災害時には本レイアウト (例) を参考として、災害廃棄物の発生状況、受け入れ先に合わせて品目を決定するとともに、選定した用地に合わせて配置する必要がある。

■レイアウト (例) の作成方針


- ・搬入・分別を円滑にするため、平時のごみ分別区分を基本とするが、リサイクル・処分 先を考慮に入れた分別とする。
- ・市外での搬出処理を考慮し、品目を細分化する。
- ・平時の処理対象外品目で災害時に発生するごみは、新たに分別区分を設ける。
- ・資源ごみについては、平時のごみ収集体制で回収可能とし、レイアウトから除外する。
- ・事故及び渋滞の防止を図るため、片付けごみ等を運搬する一般車(小型車)と、解体家 屋等の災害廃棄物を運搬するダンプトラック等(大型車)の動線を分ける。

■一次仮置場の設置・運営上の留意点

- ①仮置場周囲には飛散防止ネットを設置し、周辺環境の悪化を防止する。
- ②便乗ごみ等の不法投棄を防ぐため、入口に管理室を設置し、夜間は車の進入禁止措置 を行う管理員を常駐させ、夜間の車の進入禁止措置を行う。
- ③ごみの種別・量を管理するため、トラックスケールによる重量測定、搬入車両の荷台 の写真撮影を行う。
- ④住民が仮置場に持ち込む際の分別方法、危険物の収集不可、便乗ごみの搬入不可など の広報の徹底や持ち込み時間を区切るなどして量の調整を行うなどの対策をとる。
- ⑤仮置場には監理員が常駐するのが望ましいが、市職員での対応が難しい場合は自治会 長などの地元住民へ協力依頼や、ボランティアへの依頼も検討する。平時から、管理 体制について検討しておく。

■一次仮置場における粗選別方法

- ①解体現場で分別収集した災害廃棄物は、搬出ヤード(柱材・角材、コンクリート、金属くず)に一時保管し、二次仮置場またはリサイクル施設に搬出する。
- ②一次仮置場に分別されずに搬入された混合廃棄物は受入ヤード(可燃系混合廃棄物、 不燃系混合廃棄物)に搬入・保管する。
- ③受入ヤードに積み上げられた災害廃棄物(混合廃棄物)をバックホウで掻き出し、粗 選別作業スペースにて、グラップル等を用いて"粗選別"を行う。
- ④次に、スケルトンバケット等を用いて"ふるい選別" 等を行い、「柱材・角材」、「コンクリートがら」、「金属くず」を取り出す。
- ⑤ふるい下残渣(災害廃棄物)をホイールローダーで展開し、マグネットを用いて"磁 選別"を行い、「金属くず」を取り出す。
- ⑥分別した「柱材・角材」、「コンクリートがら」、「金属くず」、「残された残渣(混合廃棄物)」は、搬出ヤードに保管する。
- ⑦搬出ヤードに保管された災害廃棄物は、二次仮置場またはリサイクル施設に搬出する。

- 注.集積所(住民用仮置場)と粗選別が可能なスペースを一体とした仮置場レイアウト例。「集積所(住 民用仮置場)レイアウトイメージ」部分を小規模な仮置場スペースのレイアウトに活用を想定
- 注. 災害の規模に応じたレイアウトが必要。大規模災害時には集積所(住民用仮置場)+粗選別作業ス ペースを一次仮置場として二次仮置場に運搬する場合も想定できるが、中小規模災害時には集積所(住 民用仮置場)を設定し、一次仮置場に運搬もしくは処理施設に直接搬入も考えられる
- 注. 災害の種類により、配置の割合は変更する必要がある(地震時には瓦類等が増え、風水害時には畳 (ふとん、マットレス) などが増えるなど)
- 注. 廃家電は便乗ごみの排出を促進する可能性もあるため、災害時の自治体判断により除外する可能性 もある
- 注. トラックスケールが準備できない場合、写真撮影などで搬入される廃棄物量の記録、車両番号の記 録を行い搬入量・搬出量の管理を行う

保管場所	廃棄物種類		保管量	単位体積重量	保管量
	可燃系混合廃棄物	$V=542m^3$	√5m	1.0t/m³	542t
受入ヤード	不燃系混合廃棄物			1.0t/m³	542t
ラスヤート	混合廃棄物		5m	1.0t/m ³	542t
	津波堆積物		5m 5m 5m	1.46t/m³	791t
	柱材・角材	$V=542m^3$	5m	$0.55t/m^3$	298t
	コンクリート		***	1.48t/m³	802t
搬出ヤード	金属くず		5m	1.13t/m³	612t
	混合廃棄物		*	1.0t/m³	542t
	土材系		5m 5m 5m	1.46t/m³	791t

図 4.2.1 一次仮置場レイアウト (例)

【グラップル】

【スケルトンバケット】

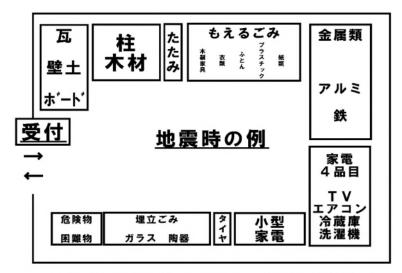
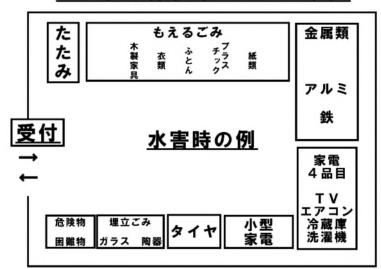

【ホイールローダー】

図 4.2.2 仮置場で使用する重機例


出典:グラップル、ホイールローダー:「災害廃棄物対策指針 技術資料 1-13-1」(平成 26 年 3 月、 環境省)

スケルトンバケット:「糸魚川市駅北大火で発生した災害廃棄物処理に係る現地視察レポート」 (災害廃棄物プラットフォーム)

(https://dwasteinfo.nies.go.jp/archive/grep/grep_170407itoigawa_city.html) をもとに作成

※建物解体物等は、別途設置

※建物解体物等は、別途設置

図 4.2.3 集積所(住民用仮置場)レイアウトの例

注. 佐用町提供資料をもとに作成したもの。

出典:「平成 29 年度 災害廃棄物処理計画策定モデル事業・災害時処理困難物適正処理モデル事業 (近畿ブロック)」(平成 30 年 2 月、環境省近畿地方環境事務所)

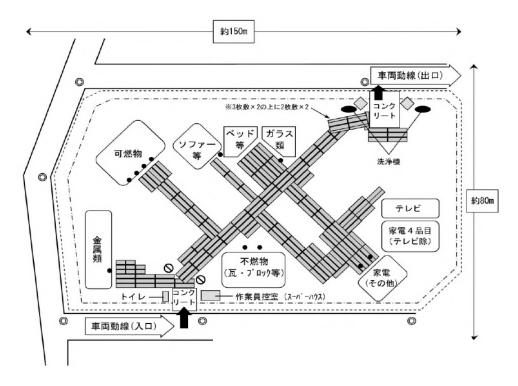


図 4.2.4 東日本大震災における仙台市の仮置場設置例

出典:「仙台市の震災廃棄物等の処理状況について」(平成24年11月28日、仙台市環境局震災廃棄物対 策室)をもとに作成

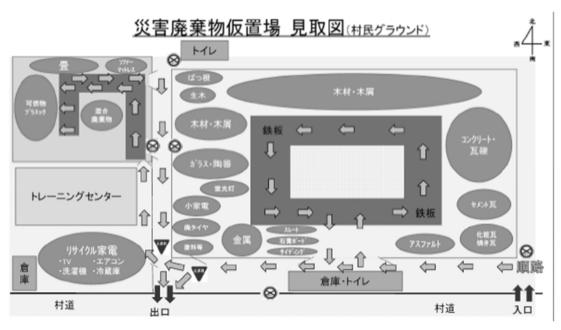


図 4.2.5 熊本地震における西原村の仮置場例

出典:「平成28年熊本地震 地盤災害調査報告書」(平成29年4月、公益社団法人 地盤工学会)

5. 災害廃棄物処理に係る連携の整理

5.1.1 協定内容等の整理

自治体、民間事業者等との協定は発災時の災害廃棄物の適正で円滑な処理のために有効であり、平時から協定の締結を検討する必要がある。

東日本大震災時には、協定を結んでいたものの、発災後に協定先の自治体に確認すると、 事前に協定を結んでいたことすら認識していなかったという事例がみられた。防災訓練等 の際に、支援要請訓練を行うなど、定期的に手続きの確認を行う取組等も必要となる。

自治体の支援としては、ごみ収集車の派遣による収集支援、生活ごみの広域的な受け入れによる処理支援、職員の派遣の3つが行われており、通常の収集・処理業務を中心とした対応となっていることが考えられる。

なお、環境省により開催された「第1回 平成28年度災害廃棄物対策推進検討会」によると、自治体間は包括的な協定が締結されているが、具体的な支援方法が定まっておらず、訓練等も行われていないため、発災後に廃棄物部局の担当者が有効に活用できていないとの課題が指摘されている。

自治体と民間団体等の協定については、さまざまな分野の民間団体と個々の専門を生か した明確な協定内容を締結することが望まれる。

以下に、災害廃棄物処理に係る協定として、自治体、民間事業者等と締結が考えられる 協定の主な内容を示す。

- ① 災害廃棄物等の処理(収集、運搬、破砕、焼却、埋立等)に関する協定
- ② 災害廃棄物等の処理に必要な資機材等の提供に関する協定
- ③ 仮置場の設置・運営、必要資機材、人材等に関する協定

5.1.2 締結中の協定の整理

対象地域においては、枚方市との間で一般廃棄物処理に関する協定が締結されている。 そのため、災害時の協定についても締結の検討を、平時より具体的な検討を進め訓練等 を実施し、災害発生に備えることが考えられる。

表 5.1.1 協定締結一覧

番号	名称	締結日	締結先
1	一般廃棄物処理(ごみ処理)に係る相互支援協定	平成21年10月7日	枚方市